Thermoanalytical study of the synthesis of Na0.5Bi0.5TiO3 ferroelectric

  • Teresa Zaremba
Regular Papers Organics/Polymers


The study presents results of examination on Na0.5Bi0.5TiO3 (NBT) ferroelectric synthesis through intermediate binary compound Bi4Ti3O12 (BIT). The first stage of the study related to obtaining BIT from oxide precursors, i.e. Bi2O3 and TiO2. The second stage included obtaining NBT from Bi4Ti3O12, Na2CO3 and TiO2. Two polymorphic modifications of TiO2 (anatase, rutile) and diversified initial homogenization of raw material batches were applied during examination.


bismuth titanate DTA sodium-bismuth titanate synthesis TG XRD 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Okazaki, Ceramics Engineering for Dielectrics, Energiya, Moscow 1976, p. 108 (in Russian).Google Scholar
  2. 2.
    G. A. Smolenskii, V. A. Isupow, A. I. Agranovskaya and N. N. Krainik, Soviet Physics — Solid State, 2 (1961) 2651.Google Scholar
  3. 3.
    J. Suchanicz, R. Poprawski and S. Matyjasik, Ferroelectrics, 192 (1997) 329.CrossRefGoogle Scholar
  4. 4.
    G. O. Jones and P. A. Thomas, Acta Cryst. B, 56 (2000) 426.CrossRefGoogle Scholar
  5. 5.
    J. Suchanicz, I. P. Mercurio, P. Marchet and T. V. Kruzina, Phys. Stat. Sol. (B), 225 (2001) 459.CrossRefGoogle Scholar
  6. 6.
    H. Nagata and T. Takenaka, J. Eur. Ceram. Soc., 21 (2001) 1299.CrossRefGoogle Scholar
  7. 7.
    P. Pookmaneea, S. Phanichphanta and R. B. Heimann, Ber. DKG, 78 (2001) 27.Google Scholar
  8. 8.
    D. L. West and D. A. Payne, J. Am. Ceram. Soc., 86 (2003) 769.CrossRefGoogle Scholar
  9. 9.
    X. Jing, Y. Li and Q. Yin, Mater. Sci. Eng. B, 99 (2003) 506.CrossRefGoogle Scholar
  10. 10.
    T. Kimura, T. Takahashi, T. Tani and Y. Saito, J. Am. Ceram. Soc., 87 (2004) 1424.CrossRefGoogle Scholar
  11. 11.
    P. Setasuwon, N. Vaneesorn, S. Kijamnajsuk and A. Thanaboonsombut, Sc. Tech. Advan. Mater., 6 (2005) 278.Google Scholar
  12. 12.
    P. G. Fox, J. Mater. Sci., 10 (1975) 340.CrossRefGoogle Scholar
  13. 13.
    K. Wieczorek-Ciurowa, M. Paryło and K. Gamrat, Ann. Pol. Chem. Soc., 1 (2001) 12.Google Scholar
  14. 14.
    K. Wieczorek-Ciurowa, Ju. G. Shirokov, M. Paryło and K. Gamrat, J. Therm. Anal. Cal., 65 (2001) 359.CrossRefGoogle Scholar
  15. 15.
    K. Wieczorek-Ciurowa, K. Gamrat, M. Paryło and Ju. G. Shirokov, J. Therm. Anal. Cal., 69 (2002) 237.CrossRefGoogle Scholar
  16. 16.
    K. Wieczorek-Ciurowa, K. Gamrat, M. Paryło and Ju. Shirokov, J. Therm. Anal. Cal., 70 (2002) 165.CrossRefGoogle Scholar
  17. 17.
    K. Wieczorek-Ciurowa, K. Gamrat and Ju. G. Shirokov, J. Therm. Anal. Cal., 72 (2003) 323.CrossRefGoogle Scholar
  18. 18.
    K. Wieczorek-Ciurowa, K. Gamrat and Z. Sawłowicz, J. Therm. Anal. Cal., 80 (2005) 619.CrossRefGoogle Scholar
  19. 19.
    JCPDS-ICDD, PDF — 2 data base (1995).Google Scholar
  20. 20.
    T. Zaremba, J. Therm. Anal. Cal., 74 (2003) 653.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Teresa Zaremba
    • 1
  1. 1.Department of Chemistry and Inorganic TechnologySilesian University of TechnologyGliwicePoland

Personalised recommendations