Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 91, Issue 3, pp 903–909 | Cite as

Heteroleptic cadmium(II) complex, potential precursor for semiconducting CDS layers

Thermal stability and non-isothermal decomposition kinetics
  • Anna Kropidłowska
  • A. Rotaru
  • M. Strankowski
  • Barbara Becker
  • E. Segal
Article

Abstract

Coordination compounds may be used as efficient precursors for fabrication of semiconducting layers. Thermal stability of such a potential precursor — [Cd{SSi(O-tBu)3}(S2CNEt2)]2 — was investigated (tBu means tert-butyl and Et means ethyl). The kinetic study was performed by means of different multi-heating rate methods: isoconversional (Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose and Friedmann) methods associated with the criterion of the independence of the activation parameters on the heating rate. The kinetic triplet of the non-isothermal decomposition of this Cd(II) complex was established.

Keywords

multi-heating rate methods non-isothermal kinetics precursor for semiconducting CdS layers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Willkinson (ed.), Comprehensive Coordination Chemistry, Vol. 2, Pergamon Press, Oxford 1987.Google Scholar
  2. 2.
    A. Dumbrava, V. Ciupina, B. Jurca, G. Prodan, E. Segal and M. Brezeanu, J. Therm. Anal. Cal., 81 (2005) 399.CrossRefGoogle Scholar
  3. 3.
    P. O’Brien, J. R. Walsh, I. M. Watson, L. Hart and S. R. P. Silva, J. Cryst. Growth, 167 (1996) 133.CrossRefGoogle Scholar
  4. 4.
    N. I. Fainer, M. L. Kosinova, Yu. M. Rumyantsev, E.G. Salman and F. A. Kuznetsov, Thin Solid Films, 280 (1996) 16.CrossRefGoogle Scholar
  5. 5.
    G. Barone, T. Chaplin, T. G. Hibbert, A. T. Kana, M. F. Mahon, K. C. Molloy, I. D. Worsley, I. P. Parkin and L. S. Proce, J. Chem. Soc. Dalton Trans., 6 (2002) 1085.CrossRefGoogle Scholar
  6. 6.
    R. Pastorek, Z. Trávniček, Z. Šindelář and F. Březina, Transition Met. Chem., 24 (1999) 304.CrossRefGoogle Scholar
  7. 7.
    R. A. Winograd, D. F. Lewis and S. J. Lippard, Inorg. Chem., 14 (1975) 2601.CrossRefGoogle Scholar
  8. 8.
    H. Tanaka and M. E. Brown, J. Therm. Anal. Cal., 80 (2005) 795.CrossRefGoogle Scholar
  9. 9.
    M. Maciejewski and S. Vyazovkin, Thermochim. Acta, 370 (2001) 149.CrossRefGoogle Scholar
  10. 10.
    P. Budrugeac, E. Segal, L. A. Perez-Maqueda and J. M. Criado, Polym. Degrad. Stab., 84 (2004) 311.CrossRefGoogle Scholar
  11. 11.
    F. J. Gotor, M. Macias, A. Ortega and J. M. Criado, Int. J. Chem. Kinet., 30 (1998) 647.CrossRefGoogle Scholar
  12. 12.
    A. Kropidłowska, J. Chojnacki and B. Becker, XLIX Zjazd PTChem i SITPChem, Gdańsk 2006, Materiały Zjazdowe, S3-K2 (2006).Google Scholar
  13. 13.
    A. Kropidłowska, D. Paliwoda, J. Chojnacki and B. Becker, Youngchem2006: International Congress of Young Chemists, Pułtusk, Book of Abstracts, (2006) 122.Google Scholar
  14. 14.
    W. Wojnowski, B. Becker, L. Walz, K. Peters, E.-M. Peters and H. G. von Schnering, Polyhedron, 11 (1992) 607.CrossRefGoogle Scholar
  15. 15.
    B. F. Ali, W. S. Al-Akramawi, K. H. Al-Obaidi and A. H. Al-Karboli, Thermochim. Acta, 419 (2004) 39.CrossRefGoogle Scholar
  16. 16.
    ICDD PDF-2 Database Release 1998, ISSN 1084-3116.Google Scholar
  17. 17.
    M. E. Brown, J. Therm. Anal. Cal., 82 (2005) 665.CrossRefGoogle Scholar
  18. 18.
    P. Budrugeac, Polym. Degrad. Stab., 89 (2005) 265.CrossRefGoogle Scholar
  19. 19.
    J. R. Opfermann and W. Hädrich, Thermochim. Acta, 263 (1995) 29.CrossRefGoogle Scholar
  20. 20.
    J. R. Opfermann, J. Therm. Anal. Cal., 60 (2000) 641.CrossRefGoogle Scholar
  21. 21.
    J. R. Opfermann, E. Kaisersberger and H. J. Flammersheim, Thermochim. Acta, 391 (2002) 119.CrossRefGoogle Scholar
  22. 22.
    S. Vyazovkin, J. Therm. Anal. Cal., 83 (2006) 45.CrossRefGoogle Scholar
  23. 23.
    B. Howell, J. Therm. Anal. Cal., 85 (2006) 165.CrossRefGoogle Scholar
  24. 24.
    B. Roduit, Ch. Borgeat, B. Berger, P. Folly, H. Andres, U. Schädeli and B. Vogelsanger, J. Therm. Anal. Cal., 85 (2006) 195.CrossRefGoogle Scholar
  25. 25.
    B. Roduit, Ch. Borgeat, B. Berger, P. Folly, B. Alonso, J. N. Aebischer and F. Stoessel, J. Therm. Anal. Cal., 80 (2005) 229.CrossRefGoogle Scholar
  26. 26.
    H. Polli, L. A. M. Pontes, M. J. B. Souza, V. J. Fernandes Jr. and A. S. Araujo, J. Therm. Anal. Cal., 86 (2006) 469.CrossRefGoogle Scholar
  27. 27.
    M. J. B. Souza, A. O. S. Silva, J. M. F. B. Aquino, V. J. Fernandes Jr. and A. S. Araujo, J. Therm. Anal. Cal., 79 (2005) 493.CrossRefGoogle Scholar
  28. 28.
    O. C. Mocioiu, M. Zaharescu, G. Jitianu and P. Budrugeac, J. Therm. Anal. Cal., 86 (2006) 429.CrossRefGoogle Scholar
  29. 29.
    P. Budrugeac, J. M. Criado, F. J. Gotor, J. Malek, L. A. Perez-Maqueda and E. Segal, Int. J. Chem. Kinet., 36 (2004) 309.CrossRefGoogle Scholar
  30. 30.
    E. L. M. Krabbendam-LaHaye, W. P. C. de Klerk and R. E. Krämer, J. Therm. Anal. Cal., 80 (2005) 495.CrossRefGoogle Scholar
  31. 31.
    H. E. Kissinger, Anal. Chem., 29 (1957) 1702.CrossRefGoogle Scholar
  32. 32.
    T. Akahira and T. Sunose, Res. Report Chiba Inst. Technol., 16 (1971) 22.Google Scholar
  33. 33.
    J. H. Flynn and L. A. Wall, J. Res. Natl. Bur. Stand., A. Phys. Chem., 70 (1966) 487.Google Scholar
  34. 34.
    T. Ozawa, Bull. Chem. Soc. Jpn., 38 (1965) 1881.CrossRefGoogle Scholar
  35. 35.
    H. L. Friedmann, J. Polym. Sci. Part C, 6 (1964) 183.Google Scholar
  36. 36.
    C. R. Li and T. B. Tang, J. Mater Sci., 34 (1999) 3467.CrossRefGoogle Scholar
  37. 37.
    S. Vyazovkin and D. Dollimore, J. Chem. Inf. Comput. Sci., 36 (1996) 42.CrossRefGoogle Scholar
  38. 38.
    S. Vyazovkin, J. Thermal Anal., 49 (1997) 1493.CrossRefGoogle Scholar
  39. 39.
    S. Vyazovkin, J. Comput. Chem., 18 (1997) 393.CrossRefGoogle Scholar
  40. 40.
    P. Budrugeac, J. Therm. Anal. Cal., 68 (2002) 131.CrossRefGoogle Scholar
  41. 41.
    A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.CrossRefGoogle Scholar
  42. 42.
    C. D. Doyle, J. Appl. Polym. Sci., 6 (1962) 639.CrossRefGoogle Scholar
  43. 43.
    T. B. Tang and M. M. Chaudhri, J. Thermal Anal., 18 (1980) 247.CrossRefGoogle Scholar
  44. 44.
    L. A. Perez-Maqueda, J. M. Criado, F. J. Gotor and J. Malek, J. Phys. Chem., 106 (2002) 2862.Google Scholar
  45. 45.
    J. M. Criado and J. Morales, Thermochim. Acta, 16 (1976) 382.CrossRefGoogle Scholar
  46. 46.
    A. I. Lesnikovich and S. V. Levchik, J. Thermal Anal., 27 (1983) 89.CrossRefGoogle Scholar
  47. 47.
    J. Šesták and G. Berggren, Thermochim. Acta, 3 (1971) 1.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Anna Kropidłowska
    • 1
  • A. Rotaru
    • 2
  • M. Strankowski
    • 3
  • Barbara Becker
    • 1
  • E. Segal
    • 4
  1. 1.Department of Inorganic Chemistry, Chemical FacultyGdańsk University of TechnologyGdañskPoland
  2. 2.Laser Department — OPAM, INFLPR — National Institute for LaserPlasma and Radiation PhysicsMagureleRomania
  3. 3.Department of Polymer Technology, Chemical FacultyGdañsk University of TechnologyGdańskPoland
  4. 4.Department of Physical Chemistry, Faculty of ChemistryUniversity of BucharestBucharestRomania

Personalised recommendations