Skip to main content
Log in

A potential bacterial carrier for bioremediation

Characterization of insoluble potato fiber

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

One of the limiting factors to the effectiveness of biostimulation and bioremediation is the loss of inoculated material from the site. This can occur by a number of pathways, but is particularly problematic in open water systems where the inoculated material is simply lost in the water. It is desirable to develop new material, a matrix, within which bacteria and/or biostimulants can be incorporated.

We have investigated the basic physical properties of insoluble potato starch to eventually evaluate its use as such a matrix. Insoluble starch fibers were prepared from white potato (Solanum tuberosum) and sweet potato (Ipomoea batatas) and were compared for their melting temperature by DSC and their ability to bind/aggregate bacteria. The DSC curves for white and sweet potato showed that the melting temperature is 127.34 and 133.05°C for white and sweet potato fibers, respectively. The TG curves for white and sweet potato starches exhibited one main mass loss step corresponding to the DTG peak temperature at 323.39 and 346.93°C, respectively. The two types of fibers, however, showed different binding/aggregation capacities for bacteria, with white potato approximately twice as many cells of Burkholderia cepacia (22.6 billion/g) as cells of Pseudomonas putida. The reverse was true for fibers from sweet potato, binding twice as many cells of Pseudomonas putida (23 billion/g) as cells of Burkholderia cepacia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Watanabe, Curr. Opin. Biotechnol., 12 (2001) 237.

    Article  CAS  Google Scholar 

  2. E. Kerry, Polar Biol., 13 (1993) 163.

    Article  Google Scholar 

  3. P. Fernández-Álvarez, J. Vila, J. M. Garrido-Fernández, M. Grifoll and J. M. Lema, J. Hazard. Mater., 137 (2006) 1523.

    Article  Google Scholar 

  4. P. U. M. Raghavan and M. Vivekanandan, Int. Biodeterior. Biodegrad., 44 (1999) 29.

    Article  Google Scholar 

  5. C. O. Obuekwe and E. M. Al-Muttawa, Biotechnol. Lett., 23 (2001) 1025.

    Article  CAS  Google Scholar 

  6. W. E. Levinson, K. E. Stormo, H. Tao and R. L. Crawford, Biological Degradation and Bioremediation of Toxic Chemicals, (1994) 455.

  7. R. N. Z. Rahman, F. M. Ghazali, A. B. Salleh and M. Basri, J. Microbiol, 44 (2006) 354.

    Google Scholar 

  8. H. Minato and T. Suto, J. Gen. Appl. Microbiol., 22 (1976) 259.

    Google Scholar 

  9. T. Ferenci, Biotechnol. Bioeng., 38 (1991) 314.

    Article  CAS  Google Scholar 

  10. S. U. Nwachukwu, Curr. Microbiol., 42 (2001) 231.

    CAS  Google Scholar 

  11. B. R. Folsom, P. J. Chapman and P. H. Pritchard, Appl. Environ. Microbiol., 56 (1990) 1279.

    CAS  Google Scholar 

  12. P. P. Luu, C. W. Yung, A. K. Sun and T. K. Wood, Appl. Microbiol. Biotechnol., 44 (1995) 259.

    Article  CAS  Google Scholar 

  13. S. C. Mojumdar, G. Madhurambal and M. T. Saleh, J. Therm. Anal. Cal., 81 (2005) 205.

    Article  CAS  Google Scholar 

  14. S. C. Mojumdar, K. G. Varshney and A. Agrawal, Res. J. Chem. Environ., 10 (2006) 89.

    CAS  Google Scholar 

  15. S. C. Mojumdar, E. Jóna and M. Melnik, J. Therm. Anal. Cal., 60 (2000) 571.

    Article  CAS  Google Scholar 

  16. H. S. Rathore, G. Varshney, S. C. Mojumdar and M. T. Saleh, J. Therm. Anal. Cal., in press.

  17. S. C. Mojumdar, J. Therm. Anal. Cal., 64 (2001) 1133.

    Article  CAS  Google Scholar 

  18. P. Simon, E. Illekova and S. C. Mojumdar, J. Therm. Anal. Cal., 83 (2006) 67.

    Article  CAS  Google Scholar 

  19. K. G. Varshney, V. Jain, A. Agrawal and S. C. Mojumdar, J. Therm. Anal. Cal., 86 (2006) 609.

    Article  CAS  Google Scholar 

  20. S. C. Mojumdar, J. Therm. Anal. Cal., 64 (2001) 629.

    Article  CAS  Google Scholar 

  21. G. Madhurambal, P. Ramasamy, P. A. Srinivasan and S. C. Mojumdar, J. Therm. Anal. Cal., 86 (2006) 601.

    Article  CAS  Google Scholar 

  22. S. C. Mojumdar, L. Martiška, D. Valigura and M. Melník, J. Therm. Anal. Cal., 81 (2005) 243.

    Article  CAS  Google Scholar 

  23. S. C. Mojumdar, J. Kozankova, J. Chocholusek, J. Majling and V. Nemecek, J. Therm. Anal. Cal., 78 (2004) 73.

    Article  CAS  Google Scholar 

  24. S. C. Mojumdar, J. Kozánková, J. Chocholoušek, J. Majling and D. Fábryová, J. Therm. Anal. Cal., 78 (2004) 145.

    Article  CAS  Google Scholar 

  25. J. Kozánková, S. C. Mojumdar, J. Chocholoušek, J. Kákoš, M. Balog and L. Krajčová, J. Therm. Anal. Cal., 81 (2005) 191.

    Article  Google Scholar 

  26. R. A. Porob, S. Z. Khan, S. C. Mojumdar and V. M. S. Verenkar, J. Therm. Anal. Cal., 86 (2006) 605.

    Article  CAS  Google Scholar 

  27. R. Crittenden, A. Laitila and P. Forssell, J. Matto, M. Saarela, T. Mattila-Sandholm and P. Myllarinen, Appl. Environ. Microbiol., 67 (2001) 3469.

    Article  CAS  Google Scholar 

  28. H. Minato and T. Suto, J. Gen. Appl. Microbiol., 24 (1978) 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Saleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elliott, C., Ye, Z., Mojumdar, S.C. et al. A potential bacterial carrier for bioremediation. J Therm Anal Calorim 90, 707–711 (2007). https://doi.org/10.1007/s10973-007-8526-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8526-5

Keywords

Navigation