Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 90, Issue 3, pp 693–698 | Cite as

Fluid radiation effects in the transient hot-wire technique

Measurement of thermal conductivity of propane
  • Y. Shi
  • L. Sun
  • F. Tian
  • J. E. S. Venart
  • R. C. Prasad
Article

Abstract

The transient hot-wire technique is widely used for absolute measurements of the thermal conductivity of fluids. Refinement of this method has resulted in a capability for accurate and simultaneous measurement of both thermal conductivity and thermal diffusivity together with a determination of the specific heat. However, these measurements, especially those for the thermal diffusivity, may be significantly influenced by fluid radiation.

The present work investigates the effect of fluid radiation on the measurements of the thermal conductivity of propane. Recently developed corrections have been used to examine this assumption and rectify the influence of even weak fluid radiation. Measurements at 372 K with a hot-wire instrument demonstrate the presence of radiation effects in both the liquid and vapor phase. The influence is much more pronounced in liquid propane at 15.5 MPa than in the vapor phase at 881.5 kPa. The technique employed to obtain radiation-free thermal conductivity measurements is described.

Keywords

argon natural convection n-pentane propane thermal conductivity thermal diffusivity thermal radiation transient hot wire technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. C. Mojumdar and L. Raki, J. Therm. Anal. Cal., 82 (2005) 89.CrossRefGoogle Scholar
  2. 2.
    S. C. Mojumdar and L. Raki, J. Therm. Anal. Cal., 85 (2006) 99.CrossRefGoogle Scholar
  3. 3.
    X. Qiu, N. Mathis and K. Schimdt, Thermochim. Acta, in press.Google Scholar
  4. 4.
    B. Chowdhury and S. C. Mojumdar, J. Therm. Anal. Cal., 81 (2005) 179.CrossRefGoogle Scholar
  5. 5.
    S. C. Mojumdar, J. Therm. Anal. Cal., 64 (2001) 1133.CrossRefGoogle Scholar
  6. 6.
    B. Chowdhury, J. Therm. Anal. Cal., 78 (2004) 215.CrossRefGoogle Scholar
  7. 7.
    S. C. Mojumdar, L. Raki, N. Mathis, K. Schmidt and S. Lang, J. Therm. Anal. Cal., 85 (2006) 119.CrossRefGoogle Scholar
  8. 8.
    J. J. Healy, J. J. De Groot and J. Kestin, Physica, 82C (1976) 392.Google Scholar
  9. 9.
    L. Sun, Simultaneous Measurement of Thermal Conductivity and Thermal Diffusivity, PhD Thesis, University of New Brunswick, Fredericton, NB, Canada (2001).Google Scholar
  10. 10.
    Y. Shi, Radiation Effects in Transient Hot-Wire Technique: Simultaneous Measurement of Thermal Conductivity and Diffusivity of Propane, MScE Thesis, University of New Brunswick, Saint John, NB, Canada (2006).Google Scholar
  11. 11.
    E. W. Lemmon, A. P. Peskin, M. O. Melinden and D. G. Friend, NIST Standard Reference Data Base 12, Version 5. The U.S. Secretary of Commence on Behalf of the United States of America.Google Scholar
  12. 12.
    J. Menashe and W. A. Wakeham, Int. J. Heat Mass Tr., 25 (1982) 661.CrossRefGoogle Scholar
  13. 13.
    L. Sun and J. E. S. Venart, Int. J. Thermophys., 26 (2005) 325.CrossRefGoogle Scholar
  14. 14.
    Y. Shi, L. Sun, J. E. S. Venart and R. C. Prasad, J. Therm. Anal. Cal., 86 (2006) 585.CrossRefGoogle Scholar
  15. 15.
    L. Sun, J. E. S. Venart and R. C. Prasad, Int. J. Thermophys., 23 (2002) 391.CrossRefGoogle Scholar
  16. 16.
    L. Sun, J. E. S. Venart and R. C. Prasad, Int. J. Thermophys., 23 (2002) 1487.CrossRefGoogle Scholar
  17. 17.
    L. Sun, J. E. S. Venart and R. C. Prasad, Int. J. Thermophys., 23 (2002) 357.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • Y. Shi
    • 1
  • L. Sun
    • 1
  • F. Tian
    • 1
  • J. E. S. Venart
    • 1
    • 2
  • R. C. Prasad
    • 1
  1. 1.University of New BrunswickSaint JohnCanada
  2. 2.University of New BrunswickFrederictonCanada

Personalised recommendations