Skip to main content
Log in

The low temperature synthesis of metal oxides by novel hydrazine method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The hydroxide, oxalate and citrate precursors of the metal oxides such as γ-Fe2O3, (MnZn)Fe2O4, Cu(K)Fe2O4, BaTiO3, La(Sr)MnO3, La(Sr)AlO3, La/Gd(Ca/Ba/Sr)CoO3, and anatase TiO2 on modifications with the hydrazine decompose at low temperatures give single phase oxides of superior properties, while the complexes without such modification require higher temperatures for achieving the phases. The hydrazine released at lower temperatures reacts with the oxygen in the atmosphere, N2H4+O2→N2+2H2O; ΔH=−625 kJ mol−1, and liberates enormous energy that is sufficient for the oxidative decomposition of the complexes now devoid of hydrazine. Such extra energy is not available in the case of the precursors without such modifications. The reaction products of hydrazine oxidation provide desired partial pressure of moisture needed for the stabilization of γ-Fe2O3. Also, the nitrogen that is formed in the reaction of hydrazine with oxygen gets trapped in the lattice of TiO2 giving yellow color nitrogen doped TiO2−xNx photocatalyst. Thus, hydrazine method of preparation has many advantages in the preparation of metal oxides of superior properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Rane, A. K. Nikumbh and A. J. Mukhedkar, J. Mater. Sci., 16 (1981) 2387.

    Article  CAS  Google Scholar 

  2. V. Borker, K. S. Rane and V. N. Kamat Dalal, J. Mater. Sci. Mater. Electr., 4 (1993) 241.

    Article  CAS  Google Scholar 

  3. K. S. Rane and V. M. S. Verenkar, Bull. Mater. Sci., 24 (2001) 39.

    Article  CAS  Google Scholar 

  4. K. S. Rane, V. M. S. Verenkar and P. Y. Sawant, Bull. Mater. Sci., 24 (2001) 331.

    Article  CAS  Google Scholar 

  5. V. Moye, K. S. Rane and V. N. Kamat Dalal, J. Mater. Sci. Mater. Electr., 1 (1990) 212.

    Article  CAS  Google Scholar 

  6. K. S. Rane, V. M. S. Verenkar and P. Y. Sawant, J. Mater. Sci. Mater. Electr., 10 (1999) 133.

    Article  CAS  Google Scholar 

  7. K. S. Rane, V. M. S. Verenkar and P. Y. Sawant, Mater. Sci., 24 (2001) 323.

    CAS  Google Scholar 

  8. K. S. Rane, V. M. S. Verenkar, R. M. Pednekar and P. Y. Sawant, J. Mater. Sci. Mater. Electr., 10 (1999) 121.

    Article  CAS  Google Scholar 

  9. K. S. Rane, R. Mhalsiker, S. Yin, T. Sato, K. Cho, E. Dunbar and P. Biswas, J. Solid State Chem., 179 (2006) 3033.

    Article  CAS  Google Scholar 

  10. R. Mhalsikar, R. Pednekar and K. S. Rane, Electrical Characteristics of TiO2 synthesized from different precursors, Inorganic Materials: Recent Advances. Eds: D. Bahadur, S. Vitta, Om Prakash, Narosa Publishing House, New Delhi, India (Paper presented at the International Symposium in Inorganic Chemistry, IIT-Bombay, Mumbai, India, Dec. 11–13 2002) pp. 469–471.

  11. H. Zhu, D. Yang, G. Yu, H. Zhang and K. Yao, Nanotechnology, 17 (2006) 2386.

    Article  CAS  Google Scholar 

  12. Y. Jiang, Y. Wu, B. Xie, S. Zhang and Y. Qian, Nanotechnology, 15 (2004) 283.

    Article  CAS  Google Scholar 

  13. J. Y. Kim, M. A. Sriram, P. H. McMichael, P. N. Kumta, B. L. Phillips and S. H. Risbud, J. Phys. Chem. B, 101 (1997) 4689.

    Article  CAS  Google Scholar 

  14. J. H. Zhan, Y. Xie, X. G. Yang, W. X. Zhang and Y. T. Qian, J. Solid State Chem., 146 (1999) 36.

    Article  CAS  Google Scholar 

  15. I. A. Vogel, A Text Book of Quantitative Inorganic Analysis, Longman, UK 1978.

    Google Scholar 

  16. S. Yin, H. Yamaki, M. Komatsu, Q. Zhang, J. Wang, Q. Tang, F. Saito and T. Sato, J. Mater. Chem., 13 (2003) 2996.

    Article  CAS  Google Scholar 

  17. S. D. Likhite, C. Radhakrishnamurthy and P. W. Sahasrabudhe, Rev. Sci. Instrum., 36 (1965) 1558.

    Article  Google Scholar 

  18. L. G. Van der Pauw, Philips Research Reports, 13 (1958) 1; A. A. Ramadan, R. D. Gould nad A. Ashour, Thin Solid Films, 239 (1994) 272.

    Google Scholar 

  19. A. Braibanti, F. Dallavalle, M. A. Pellinghelli and E. Leporati, Inorg. Chem., 7 (1968) 1430.

    Article  CAS  Google Scholar 

  20. A. Yasodhai and S. Govindarajan, J. Therm. Anal. Cal., 67 (2002) 679.

    Article  CAS  Google Scholar 

  21. L. Sacconi and A. Sabatini, J. Inorg. Nucl. Chem., 25 (1963) 1389.

    Article  CAS  Google Scholar 

  22. A. Earnshaw, L. F. Larkworthy and K. S. Patel, Z. Anorg. Allg. Chem., 334 (1964) 163.

    Article  Google Scholar 

  23. W. G. Patterson and M. Onyszchuk, Can. J. Chem., 41 (1963) 1872.

    Article  Google Scholar 

  24. J. N. Kim, M. A. Sriram, P. H. McMichael, P. N. Kumta, B. L. Phillips and S. H. Risbud, J. Phys. Chem. B., 101 (1997) 4689.

    Article  CAS  Google Scholar 

  25. M. S. Bains and D. C. Bradley, Can. J. Chem., 40 (1962) 1350.

    Article  CAS  Google Scholar 

  26. Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa and K. Koumoto, J. Mater. Chem., 13 (2003) 608.

    Article  CAS  Google Scholar 

  27. T. Lopez, J. A. Moreno, R. Gomez, X. Bokhimi, J. A. Wang, H. Yee-Madeira, G. Pecchi and P. Reyes, J. Mater. Chem., 12 (2002) 714.

    Article  CAS  Google Scholar 

  28. E. W. Schmidt, Hydrazine and its Derivatives-Preparation, Properties and Applications, Wiley Interscience New York 1984.

    Google Scholar 

  29. C. Rath, N. C. Mishra, S. Anand, R. P. Das, K. K. Sahu, U. Chandan and H. C. Verma, Appearance of superparamagnetism on heating nanosize Mn0.65Zn0.35Fe2O4’, (adsabs.harvard.edu/abs/2000ApPhL.76..475R), Applied Phys. Letters, 76 (2000) 475.

    Article  CAS  Google Scholar 

  30. R. M. Pednekar, ’Synthesis and characterization of metal and mixed metal oxides of spinel and perovskite structure’, Ph.D. Thesis Goa University, Goa, India 2006.

    Google Scholar 

  31. G. Y. Sung, K. Y. Kong and S.-C. Park, J. Am. Ceram. Soc., 74 (1991) 437.

    Article  CAS  Google Scholar 

  32. B.-E. Park and H. Ishiwara, Appl. Phys. Lett., 82 (2003) 1197.

    Article  CAS  Google Scholar 

  33. P. Delugas, V. Fiorentini and A. Filippeti, Phys. Rev. B., 71 (2005) 134302.

    Google Scholar 

  34. S. Yamaguchi, Y. Okimoto and Y. Tokura, Phys. Rev. B., 55 (1997) R8666.

    Google Scholar 

  35. S. Yamaguchi, Y. Okimoto, H. Taniguchi and Y. Tokura, Phys. Rev. B., 53 (1996) R2926.

    Google Scholar 

  36. S. Yamaguchi, Y. Okimoto and Y. Tokura, Phys. Rev. B., 54 (1996) R11 022.

    Google Scholar 

  37. W. Zipprich, S. Waschilewski, F. Rocholl and H. D. Wiemhoefer, Solid State Ionics, 101–103 (1997) 1015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Rane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rane, K.S., Uskaikar, H., Pednekar, R. et al. The low temperature synthesis of metal oxides by novel hydrazine method. J Therm Anal Calorim 90, 627–638 (2007). https://doi.org/10.1007/s10973-007-8515-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8515-8

Keywords

Navigation