Journal of Thermal Analysis and Calorimetry

, Volume 90, Issue 1, pp 39–47 | Cite as

Role of structural and macrocrystalline factors in the desolvation behaviour of cortisone acetate solvates

  • S. Petit
  • F. Mallet
  • M. -N. Petit
  • G. Coquerel


A combined analysis of structural data and experimental results (DSC, temperature-resolved XRPD and hot stage optical microscopy) revealed that the dehydration mechanism of cortisone acetate monohydrate (CTA·H2O) involves a collective and anisotropic departure of water molecules followed by a cooperative structural reorganization toward the anhydrous polymorph CTA (form 2). In spite of the lack of crystal structure data, it can be postulated from experimental data that thermal decomposition of the dihydrated form (CTA·2H2O) and of the tetrahydrofuran solvate (CTA·THF) toward another polymorph (CTA (form 3)) also proceeds according to a cooperative mechanism, thus giving rise to probable structural filiations between these crystalline forms of CTA. The crystal structure determination of two original solvates (CTA·DMF and CTA·DMSO) indicates that these phases are isomorphous to the previously reported acetone solvate. However, their desolvation behaviour does not involve a cooperative mechanism, as could be expected from structural data only. Instead, the decomposition mechanism of CTA·DMF and CTA·DMSO starts with the formation of a solvent-proof superficial layer, followed by the partial dissolution of the enclosed inner part of crystals.

Hot stage optical microscopy observations and DSC measurements showed that dissolved materials (resulting from a peritectic decomposition) is suddenly evacuated through macroscopic cracks about 30°C above the ebullition point of each solvent. From this unusual behaviour, the necessity to investigate rigorously the various aspects (thermodynamics, kinetics, crystal structures and physical factors) of solvate decompositions is highlighted, including factors related to the particular preparation route of each sample.


crystal structure desolvation mechanism solid-solid transformation solvates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. V. Mnyukh, Mol. Cryst. Liq. Cryst., 52 (1979) 163.CrossRefGoogle Scholar
  2. 2.
    T. L. Threlfall, Analyst, 120 (1995) 2435.CrossRefGoogle Scholar
  3. 3.
    R. Hüttenrauch, S. Fricke and P. Zielke, Pharm. Res., (1985) 302.Google Scholar
  4. 4.
    V. V. Boldyrev, J. Mater. Sci., 39 (2004) 5117.CrossRefGoogle Scholar
  5. 5.
    S. Petit and G. Coquerel, Polymorphism in the Pharmaceutical Industry, R. Hilfiker, Ed., Wiley-VCH, Weinheim, Germany 2006, p. 259.Google Scholar
  6. 6.
    R. W. Munn, Chem. Brit., 14 (1978) 231.Google Scholar
  7. 7.
    N. Boudjada, J. Rodriguez-Carvajal, M. Anne and M. Figlarz, J. Solid State Chem., 105 (1993) 211.CrossRefGoogle Scholar
  8. 8.
    L. Stoch, J. Thermal Anal., 38 (1992) 131.CrossRefGoogle Scholar
  9. 9.
    J.-C. Niepce and G. Watelle-Marion, C. R. Acad. Sci., 276 (1973) 627.Google Scholar
  10. 10.
    A. K. Galwey and G. M. Laverty, J. Chim. Phys., 87 (1990) 1207 and references therein.Google Scholar
  11. 11.
    N. Z. Lyakhov and V. V. Boldyrev, Russ. Chem. Rev., 41 (1972) 919.CrossRefGoogle Scholar
  12. 12.
    A. K. Galwey, J. Thermal Anal., 38 (1992) 99.CrossRefGoogle Scholar
  13. 13.
    A. K. Galwey, Proc. R. Soc. London A, 441 (1993) 313.Google Scholar
  14. 14.
    A. K. Galwey, Thermochim. Acta, 355 (2000) 181.CrossRefGoogle Scholar
  15. 15.
    I. Langmuir, J. Am. Chem. Soc., 38 (1916) 2221.CrossRefGoogle Scholar
  16. 16.
    S. R. Byrn, R. R. Pfeiffer, M. Ganey, C. Hoiberg and G. Poochikian, Chem. Mater., 6 (1994) 1148.CrossRefGoogle Scholar
  17. 17.
    D. Giron, Thermochim. Acta, 248 (1995) 1.CrossRefGoogle Scholar
  18. 18.
    N. Rodriguez-Hornedo and D. Murphy, J. Pharm. Sci., 88 (1999) 651.CrossRefGoogle Scholar
  19. 19.
    A. K. Galwey, J. Pharm. Pharmacol., 51 (1999) 879.CrossRefGoogle Scholar
  20. 20.
    T. P. Shakhtshneider and V. V. Boldyrev, Reactivity of Molecular Solids, E. Boldyreva, V. V. Boldyrev, Eds, Wiley & Sons, New York 1999, p. 271.Google Scholar
  21. 21.
    P. Van der Sluis and J. Kroon, J. Cryst. Growth, 97 (1989) 645.CrossRefGoogle Scholar
  22. 22.
    C. H. Görbitz and H. P. Hersleth, Acta Cryst., B56 (2000) 526.Google Scholar
  23. 23.
    S. R. Byrn, Solid-State Chemistry of Drugs, Academic Press, New York 1982, p. 149.Google Scholar
  24. 24.
    R. K. Khankari and D. J. W. Grant, Thermochim. Acta, 248 (1995) 61.CrossRefGoogle Scholar
  25. 25.
    D. Giron, C. Goldbronn, M. Mutz, S. Pfeffer, P. Piechon and P. Schwab, J. Therm. Anal. Cal., 68 (2002) 453.CrossRefGoogle Scholar
  26. 26.
    K. R. Morris, Polymorphism in Pharmaceutical Solids, H. G. Brittain, Ed., Marcel Dekker Inc., New York 1999, p. 125.Google Scholar
  27. 27.
    G. A. Stephenson, E. G. Groleau, R. L. Kleemann, W. Xu and D. R. Rigsbee, J. Pharm. Sci., 87 (1998) 536.CrossRefGoogle Scholar
  28. 28.
    M. D. Jones, J. C. Hooton, M. L. Dawson, A. R. Ferrie and R. Price, Int. J. Pharm., 313 (2006) 87.CrossRefGoogle Scholar
  29. 29.
    H. J. Zhu, Int. J. Pharm., 315 (2006) 18.CrossRefGoogle Scholar
  30. 30.
    S. Petit and G. Coquerel, Chem. Mater., 8 (1996) 2247.CrossRefGoogle Scholar
  31. 31.
    S. Garnier, S. Petit and G. Coquerel, J. Therm. Anal. Cal., 68 (2002) 489.CrossRefGoogle Scholar
  32. 32.
    F. Mallet, S. Petit, S. Lafont, P. Billot, D. Lemarchand and G. Coquerel, J. Therm. Anal. Cal., 73 (2002) 459.CrossRefGoogle Scholar
  33. 33.
    F. Mallet, S. Petit, S. Lafont, P. Billot, D. Lemarchand and G. Coquerel, Cryst. Growth Des., 4 (2004) 965.CrossRefGoogle Scholar
  34. 34.
    E. S. Rothman and M. E. Wall, J. Am. Chem. Soc., 81 (1959) 411.CrossRefGoogle Scholar
  35. 35.
    R. K. Callow and O. Kennard, J. Pharm. Pharmacol., 13 (1961) 723.Google Scholar
  36. 36.
    J. E. Carless, M. A. Moustafa and H. D. C. Rapson, J. Pharm. Pharmacol., 18 (1966) 190.Google Scholar
  37. 37.
    M. Kuhnert-Brandstätter and H. Grimm, Mikrochim. Acta, (1968) 115.Google Scholar
  38. 38.
    R. J. Mesley, J. Pharm. Pharmacol., 20 (1968) 877.Google Scholar
  39. 39.
    K. Shirotani and K. Sekiguchi, Chem. Pharm. Bull., 29 (1981) 2983.Google Scholar
  40. 40.
    J. P. Declercq, G. Germain and M. Van Meerssche, Cryst. Struct. Commun., 1 (1972) 59.Google Scholar
  41. 41.
    J. A. Kanters, A. de Koster, V. J. van Geerestein and L. A. van Dijck, Acta Cryst. C., 41 (1985) 760.CrossRefGoogle Scholar
  42. 42.
    V. J. van Geerestein and J. A. Kanters, Acta Cryst. C., 43 (1987) 136.CrossRefGoogle Scholar
  43. 43.
    V. J. van Geerestein and J. A. Kanters, Acta Cryst. C., 43 (1987) 936.CrossRefGoogle Scholar
  44. 44.
    J. E. Carless, M. A. Moustafa and H. D. C. Rapson, J. Pharm. Pharmacol., 24 (1972) 130P.Google Scholar
  45. 45.
    G. M. Sheldrick, SHELXTL, Release 5.10, (Program for the determination and the refinement of crystal structures), Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.Google Scholar
  46. 46.
    U. J. Griesser, Polymorphism in the Pharmaceutical Industry (ed. R. Hilfiker), Wiley-VCH, Weinheim, Germany 2006, p. 211.Google Scholar
  47. 47.
    N. N. Petropavlov, J. Cryst. Growth, 52 (1981) 889.CrossRefGoogle Scholar
  48. 48.
    J. E. Ricci, The Phase Rule and Heterogeneous Equilibrium, Dover Publications, New York 1966, p. 278.Google Scholar
  49. 49.
    W. Feitknecht, Pure Appl. Chem., 9 (1964) 423.CrossRefGoogle Scholar
  50. 50.
    R. Giovanoli, H. R. Oswald and W. Feitknecht, Helv. Chim. Acta, 49 (1966) 1971.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • S. Petit
    • 1
  • F. Mallet
    • 1
  • M. -N. Petit
    • 1
  • G. Coquerel
    • 1
  1. 1.Unité de Croissance Cristalline et de Modélisation Moléculaire (UC2M2), Sciences et Méthodes Séparatives (SMS) UPRES EA 3233, IRCOFUniversité de RouenMont Saint-Aignan CedexFrance

Personalised recommendations