Journal of Thermal Analysis and Calorimetry

, Volume 91, Issue 2, pp 517–523 | Cite as

Kinetic model of the oxidation of ZrSi2 powders

  • H. Geßwein
  • A. Pfrengle
  • J. R. Binder
  • J. Haußelt


The oxidation kinetics of Zr-disilicide (ZrSi2) powders up to temperatures of 1550°C were studied in flowing air using non-isothermal and isothermal thermogravimetric (TG) analysis. During the oxidation process two main thermal events were detected. The first stage of the oxidation reaction leads to the formation of elemental silicon as an intermediate reaction product. Upon further temperature increase the newly formed silicon is oxidized. Completely oxidized ZrSi2 samples consist of ZrSiO4, amorphous and crystalline SiO2 as well as some residual ZrO2. The experimental TG data were analysed with a model-fitting kinetic method. The gas-solid reaction is complex and can best be fitted with a multi-step reaction scheme consisting of branching reactions based on 3D diffusion mechanisms and a fractal order reaction.


kinetics thermal oxidation thermogravimetry zirconium disilicide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. M. Ondik and H. F. McMurdie, Phase Diagrams for Zirconium + Zirconia Systems, The American Ceramic Society 1998, p. 423.Google Scholar
  2. 2.
    H. Okamato, Bull. Alloy Phase Diagrams, 11 (1990) 513.Google Scholar
  3. 3.
    V. D. Hennige, J. Haußelt, H.-J. Ritzhaupt-Kleissl and T. Windmann, J. Eur. Ceram. Soc., 19 (1999) 2901.CrossRefGoogle Scholar
  4. 4.
    N. Claussen, T. Le and S. Wu, J. Eur. Ceram. Soc., 5 (1989) 29.CrossRefGoogle Scholar
  5. 5.
    O. Hönigschmid, Monatsh. Chem., 27 (1906) 1069.CrossRefGoogle Scholar
  6. 6.
    V. A. Lavrenko, V. Zh. Shemet and A. V. Goncharuk, Thermochim. Acta, 93 (1985) 501.CrossRefGoogle Scholar
  7. 7.
    J. Opfermann, Netzsch Thermokinetics 2, Version 2004.05, Netzsch Gerätebau GmbH.Google Scholar
  8. 8.
    H. Geßwein, J. R. Binder, H.-J. Ritzhaupt-Kleissl and J. Haußelt, J. Eur. Ceram. Soc., 26 (2006) 697.CrossRefGoogle Scholar
  9. 9.
    J. Opfermann, J. Therm. Anal. Cal., 60 (2000) 641.CrossRefGoogle Scholar
  10. 10.
    C. Wagner, J. Electrochem. Soc., 99 (1952) 368.Google Scholar
  11. 11.
    C. Wagner, J. Electrochem. Soc., 103 (1956) 627.CrossRefGoogle Scholar
  12. 12.
    C. Wagner, Z. Electrochemie, 63 (1959) 773.Google Scholar
  13. 13.
    H. Geßwein and J. R. Binder, Thermochim. Acta, 444 (2006) 6.CrossRefGoogle Scholar
  14. 14.
    J. P. Sanders and P. K. Gallagher, J. Therm. Anal. Cal., 72 (2003) 777.CrossRefGoogle Scholar
  15. 15.
    B. Serin and T. Ellickson, J. Chem. Phys., 9 (1941) 742.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • H. Geßwein
    • 1
    • 2
  • A. Pfrengle
    • 1
    • 2
  • J. R. Binder
    • 1
  • J. Haußelt
    • 1
    • 2
  1. 1.Institute for Materials Research IIIForschungszentrum Karlsruhe GmbHKarlsruheGermany
  2. 2.Institute of Microsystems EngineeringUniversity of FreiburgFreiburgGermany

Personalised recommendations