Journal of Thermal Analysis and Calorimetry

, Volume 91, Issue 1, pp 167–172 | Cite as

Entropy of adsorption of carbon monoxide on energetically heterogeneous surfaces

  • X. Xia
  • R. Naumann d’Alnoncourt
  • M. Muhler


Standard entropies of adsorption (Δs 0) of CO on different materials (Cu catalysts, Au catalysts, ZnO and to TiO2) are obtained from static adsorption microcalorimetry, adsorption isobars and temperature-programmed desorption, based on the thermodynamics of adsorption on energetically heterogeneous surfaces. Vibrational entropies of the surfaces s vib α are normally between the rotational and the standard translational entropy of CO in gas phase, and decrease with increasing adsorption energy, which agrees with the explanation of statistical thermodynamics. Δs 0 reflects both the mobility of adsorbates and the specific adsorbate-adsorbent interaction. Limits for reasonable values of the entropy of adsorption are proposed.


entropy of adsorption microcalorimetry temperature-programmed desorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Kemball, Adv. Catal., 2 (1950) 233.Google Scholar
  2. 2.
    M. Boudart, D. E. Mears and M. A. Vannice, Int. Chim. Belge 32 special issue, (1967) 281.Google Scholar
  3. 3.
    D. Knox and D. B. Dadyburjor, Chem. Eng. Commun., 11 (1981) 99.CrossRefGoogle Scholar
  4. 4.
    A. A. Lopatkin, Ross. Khim. Zh., 40 (1996) 5.Google Scholar
  5. 5.
    A. A. Lopatkin, Zh. Fiz. Khim., 71 (1997) 916.Google Scholar
  6. 6.
    M. M. Dubinin, A. A. Isirikjan, A. I. Sacharov and V. V. Sepinskij, Izv. Akad. Nauk SSSR, Ser. Khim., 11 (1969) 2355.Google Scholar
  7. 7.
    M. Nagao and T. Motimoto, J. Phys. Chem., 73 (1969) 2355.CrossRefGoogle Scholar
  8. 8.
    R.W. Glass and R. A. Ross, J. Phys. Chem., 77 (1973) 2751.Google Scholar
  9. 9.
    H. Blank, M. Bülow and W. Schimmer, Z. Phys. Chem., 256 (1975) 581.Google Scholar
  10. 10.
    E. Garrone, F. Rouquérol, B. Fubini and G. Della Gatta, J. Chim. Phys., 76 (1979) 528.Google Scholar
  11. 11.
    F. Rouquérol, J. Rouquérol, G. Della Gatta and C. Letoquart, Thermochim. Acta, 39 (1980) 151.CrossRefGoogle Scholar
  12. 12.
    E. Garrone, G. Ghiotti, E. Giamello and B. Fubini, J. Chem. Soc. Faraday Trans. 1, 77 (1981) 2613.CrossRefGoogle Scholar
  13. 13.
    N. Cardona-Martinez and J. A. Dumesic, J. Catal., 125 (1990) 427.CrossRefGoogle Scholar
  14. 14.
    P. Cartini, A. Gervasini and A. Auroux, J. Catal., 150 (1994) 274.CrossRefGoogle Scholar
  15. 15.
    P. Cartini, A. Gervasini and A. Auroux, Langmuir, 17 (2001) 6938.CrossRefGoogle Scholar
  16. 16.
    M. Sawa, M. Niwa and Y. Murakami, Zeolites, 10 (1990) 307.CrossRefGoogle Scholar
  17. 17.
    A. M. Efstathiou and C. O. Bennett, J. Catal., 124 (1990) 116.CrossRefGoogle Scholar
  18. 18.
    N. Cardona-Martinez and J. A. Dumesic, Adv. Catal., 38 (1992) 149.CrossRefGoogle Scholar
  19. 19.
    R. J. Cvetanović and Y. Amenomiya, Adv. Catal., 17 (1967) 103.Google Scholar
  20. 20.
    X. Xia, S. Litvinov and M. Muhler, Langmuir, 22 (2006) 8063.CrossRefGoogle Scholar
  21. 21.
    X. Xia, R. Naumann d’Alnoncourt, J. Strunk, S. Litvinov and M. Muhler, Appl. Surf. Sci., 253 (2007) 5851.CrossRefGoogle Scholar
  22. 22.
    X. Xia, J. Strunk, S. Litvinov and M. Muhler, J. Phys. Chem. C., 111 (2007) 6000.CrossRefGoogle Scholar
  23. 23.
    F. C. Tompkins, Chemisorption of Gases on Metals, Academic Press, London 1978, p. 101.Google Scholar
  24. 24.
    W. Rudzinski and T. Panczyk, J. Phys. Chem. B, 104 (2000) 9149.CrossRefGoogle Scholar
  25. 25.
    D. A. McQuarrie, Statistical Thermodynamics, University Science Books, Mill Valley, 1985, p. 81.Google Scholar
  26. 26.
    Y. Kuroda, Y. Yoshikawa, R. Kumashiro and M. Nagao, J. Phys. Chem. B., 101 (1997) 6497.CrossRefGoogle Scholar
  27. 27.
    L. Li, X. Wang, J. Shen, L. Zhou and T. Zhang, J. Therm. Anal. Cal., 82 (2005) 103.CrossRefGoogle Scholar
  28. 28.
    V. Rac, V. Rakić, S. Gajinov, V. Dondur and A. Auroux, J. Therm. Anal. Cal., 84 (2006) 239.CrossRefGoogle Scholar
  29. 29.
    M. Muhler, L. P. Nielsen, E. Törnqvist, B. S. Clausen and H. Topsøe, Catal. Lett., 14 (1992) 241.CrossRefGoogle Scholar
  30. 30.
    X. Xia, J. Strunk, R. Naumann d’Alnoncourt, W. Busser, L. Khodeir and M. Muhler, ’Probing the Surface Heterogeneity of Polycrystalline Zinc Oxide by Static Adsorption Microcalorimetry, Part I: The Adsorption of Carbon Monoxide’, J. Phys. Chem. C. submitted.Google Scholar
  31. 31.
    O. Dulaurent, X. Courtois, V. Perrichon and D. Bianchi, J. Phys. Chem. B, 104 (2000) 6001.CrossRefGoogle Scholar
  32. 32.
    X. Xia, W. Busser, J. Strunk and M. Muhler, Langmuir, 23 (2007) in press.Google Scholar
  33. 33.
    S. Derrouiche, P. Gravejat and D. Bianchi, J. Am. Chem. Soc., 126 (2004) 13010.CrossRefGoogle Scholar
  34. 34.
    V. Bolis, B. Fubini, E. Garrone, C. Morterra and P. Ugloengo, J. Chem. Soc. Faraday Trans., 88 (1992) 391.CrossRefGoogle Scholar
  35. 35.
    E. Garrone, V. Bolis and C. Morterra, Langmuir, 5 (1989) 892.CrossRefGoogle Scholar
  36. 36.
    J. M. Gottfried, K. J. Schmidt, S. L. M. Schroeder and K. Christmann, Surf. Sci., 536 (2003) 206.CrossRefGoogle Scholar
  37. 37.
    X. Xia, M. Comotti, J. Strunk, W. Busser, F. Schüth and M. Muhler, ’Comparison of CO oxidation over gold catalysts supported on different oxides studied by static adsorption microcalorimetry’, in preparation.Google Scholar
  38. 38.
    X. Xia, J. Strunk, W. Busser, R. Naumann d’Alnoncourt and M. Muhler, ’The Influence of Surface Hydroxyl Groups on the Adsorption of CO2 on Nanocrystalline ZnO Powders’, J. Phys. Chem. submitted.Google Scholar
  39. 39.
    G. Witte, Surf. Sci., 502–503 (2002) 405.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • X. Xia
    • 1
  • R. Naumann d’Alnoncourt
    • 1
  • M. Muhler
    • 1
  1. 1.Laboratory of Industrial ChemistryRuhr-University BochumBochumGermany

Personalised recommendations