Journal of Thermal Analysis and Calorimetry

, Volume 91, Issue 2, pp 641–647 | Cite as

Pyrolysis of pistachio shell as a biomass



There is an increasing concern with the environmental problems associated with the increasing CO2, NOx and SOx emissions resulting from the rising use of fossil fuels. Renewable energy, mainly biomass, can contribute to reduce the fossil fuels consumption. Biomass is a renewable resource with a widespread world distribution. Pistachio is available in large quantities in Gaziantep region in Turkey. Pistachio shell has a good energy potential for exploitation through pyrolysis and gasification.

This study deals with the thermal degradation characteristics of in different particle sizes pistachio shell and its kinetics. Thermal degradation analysis have been done by using a thermogravimetric analyzer from room temperature to 800°C in N2 atmosphere at different heating rates (5, 10, 15 and 20°C min−1). TG and DTG curves exhibited two distinct degradation zones. Kinetic parameters were calculated by using Coats-Redfern method and model-free isoconversional Flynn-Wall-Ozawa (FWO) kinetic method.


Coats-Redfern method FWO method pistachio shell pyrolysis thermogravimetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Yaman, Energ. Convers. Manage., 45 (2004) 651.CrossRefGoogle Scholar
  2. 2.
    H. H. Acma, J. Anal. Appl. Pyrolysis, 75 (2005) 211.Google Scholar
  3. 3.
    V. Mangut, E. Sabio, J. Ganan, J. F. Gonzalez, A. Ramiro, C. M. Gonzalez, S. Roman and A. Al-Kassir, Fuel. Process. Technol., 87 (2006) 109.CrossRefGoogle Scholar
  4. 4.
    T. Fisher, M. Hajaligol, B. Waymack and D. Kellog, J. Anal. Appl. Pyrolysis, 62 (2002) 331.CrossRefGoogle Scholar
  5. 5.
    M. Pietro and C. Paola, Thermochim. Acta, 413 (2004) 209.CrossRefGoogle Scholar
  6. 6.
    J. Peuravuori, N. Paaso and K. Pijlaha, Thermochim. Acta, 361 (1999) 181.CrossRefGoogle Scholar
  7. 7.
    M. V. Kök and M. R. Pamir, J. Anal. Appl. Pyrolysis, 35 (1995) 145.CrossRefGoogle Scholar
  8. 8.
    G. Steiner, J. Rath, M. G. Wolfinger and G. Staudinger, Thermochim. Acta, 398 (2003) 59.CrossRefGoogle Scholar
  9. 9.
    M. V. Kök, G. Pokol, C. Keskin, J. Madarász and S. Bagci, J. Therm. Anal. Cal., 76 (2004) 247.CrossRefGoogle Scholar
  10. 10.
    M. V. Kök, J. Therm. Anal. Cal., 64 (2001) 1319.CrossRefGoogle Scholar
  11. 11.
    J. M. Nazzal, J. Therm. Anal. Cal., 65 (2001) 847.CrossRefGoogle Scholar
  12. 12.
    S. Vyazovkin and C. A. Wight, Thermochim. Acta, 340 (1999) 53.CrossRefGoogle Scholar
  13. 13.
    R. Lopez-Fonseca, I. Landa, M. A. Guiterrez-Ortiz and J. R. Gonzalez-Velasco, J. Therm. Anal. Cal., 80 (2005) 65.CrossRefGoogle Scholar
  14. 14.
    M. A. Olivella and F. X. C. de la Heras, Thermochim. Acta, 385 (2002) 171.CrossRefGoogle Scholar
  15. 15.
    Y. Tonbul and K. Yurdakoc, Turk. J. Chem., 25 (2001) 333.Google Scholar
  16. 16.
    M. V. Kök, Energ. Source, 25 (2003) 1007.CrossRefGoogle Scholar
  17. 17.
    M. Z. Duz, Y. Tonbul, A. Baysal, O. Akba, A. Saydut and C. Hamamci, J. Therm. Anal. Cal., 81 (2005) 395.CrossRefGoogle Scholar
  18. 18.
    Y. Tonbul, A. Saydut and C. Hamamci, Oil Shale, 23 (2006) 286.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  1. 1.Faculty of Science and Art, Department of ChemistryDicle UniversityDiyarbakirTurkey

Personalised recommendations