Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 93, Issue 2, pp 373–379 | Cite as

Thermogravimetric analysis of layered double hydroxides with chloramphenicol and salicylate in the interlayer space

  • Mihaela Frunza
  • Gabriela Lisa
  • M. I. Popa
  • N. D. Miron
  • Denisa Ileana Nistor
Article

Abstract

The thermal behavior of the new inorganic-organic nanohybrid materials obtained by intercalation of chloramphenicol and salicylate into layered double hydroxides (LDHs) by direct synthesis method, anion exchange reaction and the reconstruction method was evaluated by dynamic thermogravimetric analysis in air, at heating rates of 5°C min−1. The XRD patterns of the samples are characteristic for those of well crystallized solids with layered double hydroxide structures. The FTIR spectroscopy results show the presence of the organic compound within the network structure of the synthesized LDHs. The kinetic parameters (reaction order (n) apparent activation energy (E a) and pre-exponential factor (lnA) were calculated by the Coats-Redfern method. The compensation effects were determined.

Keywords

chloramphenicol intercalation layered double hydroxides salicylate thermal degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Wang, E. Wang, L. Gao and L. Xu, J. Solid State Chem., 178 (2005) 736.CrossRefGoogle Scholar
  2. 2.
    B. Li, J. He, D. G. Evans and X. Duan, Appl. Clay Sci., 27 (2004) 199.CrossRefGoogle Scholar
  3. 3.
    M. Frunza, G. Carja and M. I. Popa, Scientific Study Res., VI 2 (2005) 173.Google Scholar
  4. 4.
    V. Ambrogi, G. Fardella, G. Grandolini and L. Perioli, Int. J. Pharm., 220 (2001) 23.CrossRefGoogle Scholar
  5. 5.
    M. Wei, X. Y. Xu, J. He, G. Y. Rao and H. L. Yang, J. Therm. Anal. Cal., 85 (2006) 795.CrossRefGoogle Scholar
  6. 6.
    J. M. Bouzaid, R. L. Frost and W. N. Martens, J. Therm. Anal. Cal., 88 (2007) 511CrossRefGoogle Scholar
  7. 7.
    L. M. Prevot, C. Forano and J. P. Besse, Appl. Clay Sci., 18 (2001) 3.CrossRefGoogle Scholar
  8. 8.
    M. I. Popa and M. Frunza, Bull. Poly., Insti. Iasi, LII (LVI) (2006) 79.Google Scholar
  9. 9.
    M. I. Popa, N. Aelenei, M. Irimia and G. Carja, Bull. Sci. Univ. Politech. Timi§oara, 46 (2001) 72.Google Scholar
  10. 10.
    B. P. Yu, J. Sun, M. Q Li, H. S. Luo and J. P. Yu, World J. Gastroenterol., 9 (2003) 1427.Google Scholar
  11. 11.
    A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.CrossRefGoogle Scholar
  12. 12.
    S. H. Hwang, Y. S. Han and J. H. Choy, Bull. Korean Chem. Soc., 22 (2001) 1019.Google Scholar
  13. 13.
    Z. P. Xu and H. C. Zeng, J. Phys. Chem. B, 105 (2001) 1743.CrossRefGoogle Scholar
  14. 14.
    S. Velu, V. Amukumar, V. Narayanan and C. S. Swamy, J. Mater. Sci., 32 (1997) 957.CrossRefGoogle Scholar
  15. 15.
    R. O. Macedo, C. F. S. Aragao, T. G. do Nascimento and A. M. C. Macedo, J. Therm. Anal. Cal., 56 (1999) 1323.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • Mihaela Frunza
    • 1
  • Gabriela Lisa
    • 1
  • M. I. Popa
    • 1
  • N. D. Miron
    • 2
  • Denisa Ileana Nistor
    • 2
  1. 1.Faculty Chemical EngineeringGh. Asachi Technical University IASIIasiRomania
  2. 2.University of BacauBacauRomania

Personalised recommendations