Advertisement

Thermochemistry of vitreous antimony orthophosphate

  • P. Melnikov
  • M. A. C. Secco
  • W. R. Guimarães
  • H. W. L. dos Santos
Regular Papers Organics/Polymers

Abstract

A vitreous form of antimony orthophosphate has been obtained using antimony polyphosphate as a precursor. Morphologically, it is composed of small uniform grains having ellipsoidal shapes. Prolonged thermal treatment leads to the transformation into a crystalline variety. According to TG curves, both forms start to evaporate at 920°C without decomposition. Melting point of crystalline SbPO4 has been determined to be 877°C. Thermomechanical study reveals plastic behavior due to the capacity to flow under shearing stress. Ceramics formation in the system Sb2O3-SbPO4 is discussed. The presence of glass domains in this system has not been confirmed.

Keywords

antimony orthophosphate glasses inorganic materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Alonzo, N. Bertazzi, P. Galli, G. Marci, M. A. Massucci, L. Palmisano, P. Patrono and F. Saiano, Mater. Res. Bull., 33 (1998) 1233.CrossRefGoogle Scholar
  2. 2.
    B. Kinberger, Acta Chem. Scand., 24 (1970) 320, ICSD file 23-0793.CrossRefGoogle Scholar
  3. 3.
    L. M. Volkova, A. S. Kamischeva, A. A. Udovenko, Yu. N. Mikhailov and V. I. Bovna, Coord. Chem., 9 (1983) 609.Google Scholar
  4. 4.
    K. M. Kurbanov, Kristallografia, 32 (1987) 746.Google Scholar
  5. 5.
    S. A. Dembovsky and E. A. Chechetking, Glass Formation, Nauka, Moscow 1990.Google Scholar
  6. 6.
    L. Stoch, J. Therm. Anal. Cal., 77 (2004) 7.CrossRefGoogle Scholar
  7. 7.
    Natl. Bur. Stand. (U.S.) Monogr. 25; 21, 22(1984), quoted in ICDS, PDF file 35-0829.Google Scholar
  8. 8.
    D. Robbins, J. Inorg. Nucl. Chem., 19 (1961) 183.CrossRefGoogle Scholar
  9. 9.
    P. Melnikov, F. J. dos Santos, S. B. Santagnelli, M. A. C. Secco and W. R. Guimarães, J. Therm. Anal. Cal., 81 (2005) 45.CrossRefGoogle Scholar
  10. 10.
    S. Garnier, S. Petit and G. Coquerel, J. Therm. Anal. Cal., 68 (2002) 489.CrossRefGoogle Scholar
  11. 11.
    W. R. Guimarães, Physico-chemical Properties of Antimony Phosphates, Master thesis, Department of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Brazil 2004.Google Scholar
  12. 12.
    P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, London 1986.Google Scholar
  13. 13.
    H. G. Wiedemann, R. Riesen and A. Boller, Elasticity Characterization of Materials During Thermal Treatment by Thermal Mechanical Analysis, Materials Characterization by Thermomechanical Analysis, ASTM STP 1136, A.T. Riga and C. M Neag, Eds, American Society for Testing and Materials, Philadelphia, 1991.Google Scholar
  14. 14.
    M. Nalin, Antimony Polyanionic Glasses, Doctoral thesis, Institute of Chemistry, Araraquara, Brazil 2002.Google Scholar
  15. 15.
    A. A. Brian and A. K. Cheetham, J. Solid State Chem., 155 (2000) 451.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • P. Melnikov
    • 1
  • M. A. C. Secco
    • 1
  • W. R. Guimarães
    • 1
  • H. W. L. dos Santos
    • 1
  1. 1.Physics Department/CCET/UFMSCampo Grande/MSBrazil

Personalised recommendations