Journal of Thermal Analysis and Calorimetry

, Volume 91, Issue 1, pp 195–202 | Cite as

Thermokinetic studies of poly(o-toluidine) doped with perchloric acid

  • S. M. Ahmed
  • M. I. Abd-Elrhaman
Regular Papers Organics/Polymers


Thermokinetic parameters of the solid-state of poly(o-toluidine) (POT) doped with perchloric (HClO4) acid was studied by thermogravimetric analysis (TG) and differential thermal analysis (DTA) under non-isothermal conditions. Molecular mechanics (MM) calculations suggest that the optimal geometric structure (OMG) of the HClO4-doped POT is at least four orders of magnitude more stable than the molecular geometric (MG) structure. These calculations indicate that the potential energy (PE/kJ mol−1) of the OMG is about four (1.09·104) orders of magnitude lower than the MG structure of the same matrix. The empirical formula of the doped polymer is best represented by [POT-2HClO4·2H2O]n as substantiate by elemental analysis and MM calculations. The full polymer decomposition and degradation were found to occur in three stages during the temperature increase. The decomposition activation energy (E d) of HClO4-doped POT matrix was calculated by employing different approximations. The heating rate (α) of the decomposition and the frequency factor (K o) were calculated. A number of equations were used to evaluate the kinetic parameters. The mechanism of the degradation of the conducting polymer is explained on the basis of their kinetic parameters. A remarkable heating rate dependence of the decomposition rate was observed.


DTA elemental analyses molecular mechanics calculations poly(o-toluidine) thermal degradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Rysava, T. Spasov and L. Tichy, J. Thermal Anal., 32 (1987) 1015.CrossRefGoogle Scholar
  2. 2.
    A. G. MacDiarmid, S. L Mu, N. L. D. Somasiri and W. Wu, Mol. Cryst. Liq. Cryst., 121 (1985) 187.CrossRefGoogle Scholar
  3. 3.
    M. C. Gupta and S. S. Umare, Macromolecules, 25 (1992) 138.CrossRefGoogle Scholar
  4. 4.
    T. Nakayima and T. Kawagoe, Synth.Met., 28 (1989) E–696.Google Scholar
  5. 5.
    P. Hany, C. E. Santier and M. Genies, J. Appl. Electrochem., 18 (1989) 751.Google Scholar
  6. 6.
    P. Hany, C. Santier and E. M. Genies, Synth. Met., 3 (1989) 369.CrossRefGoogle Scholar
  7. 7.
    M. C. Gupta and A. D. Borker, Indian J. Chem., 29A (1990) 631.Google Scholar
  8. 8.
    K. Ogura, H. Shiigi, M. Nakayama and A. Fujii, Electrochem. Soc., 145 (1998) 3351.CrossRefGoogle Scholar
  9. 9.
    B. Wessling, Synth. Met., 93 (1998) 143.CrossRefGoogle Scholar
  10. 10.
    Y. Cao, G. M. Treacy, P. Smith and A. J. Heeger, Appl. Phys. Lett., 60 (1992) 2711.CrossRefGoogle Scholar
  11. 11.
    A. Tsumura, H. Koezuka and T. Ando, Appl. Phys. Lett., 49 (1986) 1210.CrossRefGoogle Scholar
  12. 12.
    C. T. Kuo, A. S. Chen, G. W. Hwang and H. H. Kuo, Synth. Met., 93 (1998) 155.CrossRefGoogle Scholar
  13. 13.
    J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn and A. B. Holmes, Nature, 347 (1990) 539.CrossRefGoogle Scholar
  14. 14.
    Y. Cao, P. Smith and A. J. Heeger, Synth. Met., 55–57 (1993) 3514.CrossRefGoogle Scholar
  15. 15.
    B. Sanjai, A. Raghunathan, T. S. Natarajan and G. Raangaraijan, Phys. Rev. B, 55 (1991) 10734.CrossRefGoogle Scholar
  16. 16.
    E. R. Holland, S. J. Pomfert, P. N. Adams and A. P. Monkman, J. Phys.: Condens. Matter, 8 (1996) 2991.CrossRefGoogle Scholar
  17. 17.
    A. P. Monkman, E. Rebourt and A. Petr, Synth. Met., 84 (1997).Google Scholar
  18. 18.
    Y. Cao, J. Qui and P. Smith, Synth. Met., 69 (1993) 187.CrossRefGoogle Scholar
  19. 19.
    S. S. Goh, H. S. O. Chan and C. H. Ong, Polymer, 37 (1996) 2675.CrossRefGoogle Scholar
  20. 20.
    Y. Z. Wang, J. Joo, C. H. Hsu and A. J. Epstein, Synth. Met., 68 (1995) 207.CrossRefGoogle Scholar
  21. 21.
    A. G. MacDiarmid and A. J. Epstein, Synth. Met., 65 (1994) 103.CrossRefGoogle Scholar
  22. 22.
    Z. H. Wang, A. Ray, A. G. MacDiarmid and A. J. Epstein, Phys. Rev. B, 43 (1991) 4373.CrossRefGoogle Scholar
  23. 23.
    H. Varela and R. M. Torresi, J. Electrochem. Soc., 147 (2000) 665.CrossRefGoogle Scholar
  24. 24.
    J. Stejskal, I. Sapurina, M. Trchova, J. Prokes, I. Krivka and E. Tobolkova, Macromolecules, 31 (1998) 2218.CrossRefGoogle Scholar
  25. 25.
    R. H. Boyd, Thermal Stability of Polymers, R. T. Conley, Ed., Marcel Dekker, New York 1970, pp. 47–89.Google Scholar
  26. 26.
    A. Inaba and T. Kashiwagi, Macromolecules, 19 (1986) 2412.CrossRefGoogle Scholar
  27. 27.
    D. K. Dash, S. K. Sahu and P. L. Nayak, J. Therm. Anal. Cal., 86 (2006) 517.CrossRefGoogle Scholar
  28. 28.
    S. M. Ahmed, Eur. Polym. J., 38 (2002) 25.CrossRefGoogle Scholar
  29. 29.
    R. C. Patil, S. M. Ahmed and K. Ogura, Polym. J., 33 (2000) 466.CrossRefGoogle Scholar
  30. 30.
    T. Nagaoka, S. M. Ahmed and K. Ogura, J. Electrochem. Soc., 146 (1999) 3378.CrossRefGoogle Scholar
  31. 31.
    R. C. Patil, S. M. Ahmed, H. Shiigi, M. Nakayama and K. Ogura, Polym. Sci. Part A: Polym. Chem., 37 (1999) 4596.CrossRefGoogle Scholar
  32. 32.
    S. M. Ahmed, T. Nagaoka and K. Ogura, Anal. Sci., 14 (1998) 535.CrossRefGoogle Scholar
  33. 33.
    S. M. Ahmed, Polym. Degrad. Stab., 85 (2004) 605.CrossRefGoogle Scholar
  34. 34.
    S. M. Ahmed, J. Int J. Chem. Kinet., 35 (2003) 260.CrossRefGoogle Scholar
  35. 35.
    M. M Kamal, S. M. Ahmed, M. M. Shahata and Y. M. Temerk, Anal. Bioanal. Chem., 372 (2002) 843.CrossRefGoogle Scholar
  36. 36.
    S. M. Ahmed, M. M. Shahata and M. Kamal, Inorg. Organomet. Polym., 13 (2003) 171.CrossRefGoogle Scholar
  37. 37.
    S. M. Ahmed, B. M. Abu-Zied, J. Anal. Appl. Pyrolysis, 70 (2003) 277.CrossRefGoogle Scholar
  38. 38.
    U. Burkert and N. L. Allinger, Molecular Mechanics, ACS Monograph, 177, American Chemical Society, Washington, DC 1982.Google Scholar
  39. 39.
    P. Savitha and D. N. Sathyanarayana, Synth. Met., 154 (2004) 113.CrossRefGoogle Scholar
  40. 40.
    C. Civakumar, T. C. Wen, A. Gopalan and H. Teng, Synth. Met., 123 (2003) 219.CrossRefGoogle Scholar
  41. 41.
    W. Shenglong, W. Fosong and G. Xiaohui, Synth. Met., 79 (1986) 11.Google Scholar
  42. 42.
    A. L. Sharma, V. Saxena, S. Annapoorni and B. D. Malhotra, J. Appl. Polym. Sci., 81 (2001) 1460.CrossRefGoogle Scholar
  43. 43.
    Y. Wei, G. W. Tang, K. F. Husch, E. M. Sherr, A. G. MacDiarmid and A. J. Epstein, Polymer, 33 (1992) 314.CrossRefGoogle Scholar
  44. 44.
    H. S. O. Chan, S. C. Ng, W. S. Sim, W. S. H. Seo and B. T. G. Tan, Macromolecules, 26 (1993) 144.CrossRefGoogle Scholar
  45. 45.
    M. V. Kulkarni, A. K. Viswanath and U. P. Mulik, Mater. Chem. Phys., 89 (2005) 1.CrossRefGoogle Scholar
  46. 46.
    H. S. Chen, J. Non-Cryst. Solids, 27 (1978) 227.CrossRefGoogle Scholar
  47. 47.
    M. I. Abd-Elrahman, M. O. Ahmed, S. M. Ahmed, T. Aboul-Fadl and A. El-Shorbagi, Biophys. Chem., 97 (2002) 113.CrossRefGoogle Scholar
  48. 48.
    J. H. Flynn and L. A. Wall, Polym. Lett., 4 (1989) 323.CrossRefGoogle Scholar
  49. 49.
    F. Cataldo and P. Maltese, Eur. Polym. J., 38 (2002) 1791.CrossRefGoogle Scholar
  50. 50.
    S. Kazim, V. Ali, M. Zulfequar, M. Mazharul Haq and M. Husain, Current Appl. Phys., (2006) Elsevier, in press.Google Scholar
  51. 51.
    J. A. Augis and J. E. Bennent, J. Electrochem. Soc., 125 (1978) 330.CrossRefGoogle Scholar
  52. 52.
    H. G. Kissinger, Anal. Chem., 29 (1957) 1702.CrossRefGoogle Scholar
  53. 53.
    S. Niazi, J. Pharm. Sci., 67 (1978) 488.CrossRefGoogle Scholar
  54. 54.
    S. Mahadevan, A. Giridhar and A. K. Singh, J. Non-Cryst. Solids, 88 (1986) 11.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of ScienceAssiut UniversityAssiutEgypt
  2. 2.Physics Department, Faculty of ScienceAssiut UniversityAssiutEgypt

Personalised recommendations