Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 91, Issue 2, pp 463–469 | Cite as

Thermodynamic investigation of several natural polyols (II)

Heat capacities and thermodynamic properties of sorbitol
  • B. Tong
  • Z. C. Tan
  • Q. Shi
  • Y. S. Li
  • S. X. Wang
Article

Abstract

The low-temperature heat capacity C p,m of sorbitol was precisely measured in the temperature range from 80 to 390 K by means of a small sample automated adiabatic calorimeter. A solid-liquid phase transition was found at T=369.157 K from the experimental C p-T curve. The dependence of heat capacity on the temperature was fitted to the following polynomial equations with least square method. In the temperature range of 80 to 355 K, C p,m/J K−1 mol−1=170.17+157.75x+128.03x 2-146.44x 3-335.66x 4+177.71x 5+306.15x 6, x= [(T/K)−217.5]/137.5. In the temperature range of 375 to 390 K, C p,m/J K−1 mol−1=518.13+3.2819x, x=[(T/K)-382.5]/7.5. The molar enthalpy and entropy of this transition were determined to be 30.35±0.15 kJ mol−1 and 82.22±0.41 J K−1 mol−1 respectively. The thermodynamic functions [H T-H 298.15] and [S T-S 298.15], were derived from the heat capacity data in the temperature range of 80 to 390 K with an interval of 5 K. DSC and TG measurements were performed to study the thermostability of the compound. The results were in agreement with those obtained from heat capacity measurements.

Keywords

DSC heat capacity phase transition sorbitol TG-DTG thermodynamic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Kristo and C. G. Biliaderis, Food Hydrocolloids, in press.Google Scholar
  2. 2.
    J. P. Doyle, P. Giannouli, E. J. Martin, M. Brooks and E. R. Morris, Carbohydr. Polym., 64 (2006) 391.CrossRefGoogle Scholar
  3. 3.
    R. A. Talja and Y. H. Roos, Thermochim. Acta, 380 (2001) 109.CrossRefGoogle Scholar
  4. 4.
    N. N. Volkova and I. Wadso, J. Chem. Thermodyn., 27 (1995) 29.CrossRefGoogle Scholar
  5. 5.
    C. D. Porto, F. Cordaro and N. Marcassa, LWT, 39 (2006) 159.CrossRefGoogle Scholar
  6. 6.
    Y. N. Lian, A. T. Chen, J. Suurkuusk and I. Wadsoe, Acta Chem. Scand., A36 (1982) 735.CrossRefGoogle Scholar
  7. 7.
    G. Barone and G. Della Gatta, J. Chem. Soc. Faraday Trans., 86 (1990) 75.CrossRefGoogle Scholar
  8. 8.
    Z. C. Tan, G. Y. Sun and Y. Sun, J. Thermal Anal., 45 (1995) 59.CrossRefGoogle Scholar
  9. 9.
    Z. C. Tan, G. Y. Sun and Y. J. Song, Thermochim. Acta, 252–253 (2000) 247.CrossRefGoogle Scholar
  10. 10.
    Z. C. Tan, L. X. Sun and S. H. Meng, J. Chem. Thermodyn., 34 (2002)1417.CrossRefGoogle Scholar
  11. 11.
    Z. C. Tan, B. P. Liu, J. B. Yan and L. X. Sun, Comput., Appl. Chem., 20 (2003) 264.Google Scholar
  12. 12.
    H. Saitoh, S. Ikeuchi and K. Saito, J. Therm. Anal. Cal., 81 (2005) 511.CrossRefGoogle Scholar
  13. 13.
    M. H. Wang, Z. C. Tan, Q. Shi, L. X. Sun and T. Zhang, J. Therm. Anal. Cal., 84 (2006) 413.CrossRefGoogle Scholar
  14. 14.
    Z. H. Zhang, Z. C. Tan, Y. S. Li and L. X. Sun, J. Therm. Anal. Cal., 85 (2006) 551.CrossRefGoogle Scholar
  15. 15.
    B. P. Liu, Z. C. Tan, J. L. Lu, X. Z. Lan, L. X. Sun, F. Xu, P. Yu and J. Xing, Thermochim. Acta, 397 (2003) 67.CrossRefGoogle Scholar
  16. 16.
    Y. Y. Di, Z. C. Tan, X. M. Wu, S. H. Meng and S. S. Qu, Thermochim. Acta, 356 (2000) 143.CrossRefGoogle Scholar
  17. 17.
    Z. C. Tan, J. C. Yie, X. A. Yin, S. X. Chen and W. B. Wang, Chin. Sci. Bull., 32 (1987) 240.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • B. Tong
    • 1
    • 3
  • Z. C. Tan
    • 1
    • 2
  • Q. Shi
    • 1
    • 3
  • Y. S. Li
    • 2
  • S. X. Wang
    • 2
  1. 1.Thermochemistry Laboratory, Dalian Institute of Chemical PhysicsChinese Academy of ScienceDalianChina
  2. 2.College of Environmental Science and EngineeringDalian Jiaotong UniversityDalianChina
  3. 3.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations