Journal of Thermal Analysis and Calorimetry

, Volume 91, Issue 2, pp 609–613 | Cite as

Thermoanalytical investigations of 4-methylpiperazine-1-carbodithioic acid ligand and its iron(III), cobalt(II), copper(II) and zinc(II) complexes

  • S. B. Kalia
  • G. Kaushal
  • K. Lumba
  • Priyanka


The thermal decomposition studies on 4-methylpiperazine-1-carbodithioic acid ligand (4-MPipzcdtH) and its complexes, viz. [M(4-MPipzcdtH)n](ClO4)n (M=Fe(III) when n=3; M=Co(II), Cu(II) when n=2) and [Zn(4-MPipzcdtH)2]Cl2 have been carried out using non-isothermal techniques (TG and DTA). Initial decomposition temperatures (IDT), indicate that thermal stability is influenced by the change of central metal ion. Free acid ligand exhibits single stage decomposition with a sharp DTA endotherm. Complexes, [M(4-MPipzcdtH)n](ClO4)n undergo single stage decomposition with detonation and give rise to very sharp exothermic DTA curves while the complex [Zn(4-MPipzcdtH)2]Cl2 shows three-stage decomposition patterns.

The kinetic and thermodynamic parameters, viz. the energy of activation E, the frequency factor A, entropy of activation S and specific rate constant k, etc. have been evaluated from TG data using Coats and Redfern equation. Based upon the results of the differential thermal analysis study, the [M(4-MPipzcdtH)n](ClO4)n complexes have been found to possess characteristic of high energy materials.


Coats-Redfern method DTA metal ions 4-methylpiperazine-1-carbodithioate TG 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. McGrath, M. O’Connor, J. Charles, C. Sangregorio, J. M. W. Seddon, E. Sinn, F. E. Sowrey and N. A. Young, Inorg. Chem. Commun., 2 (1999) 536.CrossRefGoogle Scholar
  2. 2.
    D. Coucouvanis, Prog. in Inorg. Chem., 26 (1979) 301.CrossRefGoogle Scholar
  3. 3.
    E. T. G. Cavalheiro, M. Ionashiro, G. Marino, S. T. Breviglieri and G. O. Chierice, J. Braz. Chem. Soc., 10 (1999) 65.CrossRefGoogle Scholar
  4. 4.
    S. P. Chen, X. X. Meng, Q. Shuai, B. J. Jiao, S. L. Gao and Q. J. Shi, J. Therm. Anal. Cal., 86 (2006) 767.CrossRefGoogle Scholar
  5. 5.
    R. Sharma and N. K. Kaushik, J. Therm. Anal. Cal., 78 (2004) 953.Google Scholar
  6. 6.
    R. Pastorek, J. Kameniček, H. Vrbová, V. Slovák and M. Pavliček, J. Coord. Chem., 59 (2006) 437.CrossRefGoogle Scholar
  7. 7.
    D. Ondrušová, E. Jóna and P. Šimon, J. Therm. Anal. Cal., 67 (2002) 147.CrossRefGoogle Scholar
  8. 8.
    F. Forghieri, C. Preti, L. Tassi and G. Tosi, Polyhedron, 7 (1988) 1231.CrossRefGoogle Scholar
  9. 9.
    M. C. D. Silva, M. M. Conceicao, M. F. S. Trindade, A. G. Souza, C. D. Pinheiro, J. C. Machado and P. F. A. Filho, J. Therm. Anal. Cal., 75 (2004) 583.CrossRefGoogle Scholar
  10. 10.
    G. Singh and D. K. Pandey, Thermans, 86-87 (2002).Google Scholar
  11. 11.
    S. B. Kalia, G. Kaushal, D. K. Sharma and B. C. Verma, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 35 (2005) 181.CrossRefGoogle Scholar
  12. 12.
    A. W. M. Lee, W. H. Chan, C. M. L. Chiu and K. T. Tang, Anal. Chim. Acta, 218 (1989).Google Scholar
  13. 13.
    S. Singhal, A. N. Garg and K. Chandra, J. Therm. Anal. Cal., 78 (2004) 941.Google Scholar
  14. 14.
    A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.CrossRefGoogle Scholar
  15. 15.
    J. Zsakó, Cs. Várhelyi and E. Kékedy, J. Inorg. Nucl. Chem., 28 (1966) 2637.CrossRefGoogle Scholar
  16. 16.
    P. V. Khadikar, S. M. Ali and B. Heda, Thermochim. Acta, 82 (1984) 253.CrossRefGoogle Scholar
  17. 17.
    P. Chourasia, K. K. Suryesh and A. P. Misra, Proc. Ind. Acad. Sci. (Chem. Sci.), 73 (1993) 105.Google Scholar
  18. 18.
    A. A. Frost and R. G. Pearson, ’Kinetics and Mechanism’, Wiley, New York 1961.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • S. B. Kalia
    • 1
  • G. Kaushal
    • 1
  • K. Lumba
    • 1
  • Priyanka
    • 1
  1. 1.Department of ChemistryHimachal Pradesh UniversityShimlaIndia

Personalised recommendations