Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 91, Issue 1, pp 299–303 | Cite as

Thermal deformation thermodynamics of a smectite mineral

  • H. Noyan
  • M. Önal
  • Y. Sarıkaya
Regular Papers Theory/Instrumentation

Abstract

A method has been purposed to calculate some of the thermodynamic quantities for the thermal deformation of a smectite without using any basic thermodynamic data. The Hançılı (Keskin, Ankara, Turkey) bentonite containing a smectite of 88% by volume was taken as material. Thermogravimetric (TG) and differential thermal analysis (DTA) curves of the sample were obtained. Bentonite samples were heated at various temperatures between 25–900°C for the sufficient time (2 h) until to establish the thermal deformation equilibrium.

Cation-exchange capacity (CEC) of heated samples was determined by using the methylene blue standard method. The CEC was used as a variable of the equilibrium. An arbitrary equilibrium constant (K a) was defined similar to chemical equilibrium constant and calculated for each temperature by using the corresponding CEC-value. The arbitrary changes in Gibbs energy (ΔG a 0 ) were calculated from K a-values. The real change in enthalpy (ΔH 0) and entropy (ΔS 0) was calculated from the slopes of the lnK vs. 1/T and ΔG vs. T plots, respectively. The real changes in Gibbs energy (ΔG 0) and real equilibrium constant (K) were calculated by using the ΔH 0 and ΔS 0 values. The results at the two different temperature intervals are summarized as below: ΔG 1 0 H 1 0 −ΔS 1 0 T=−RTlnK 1=47000−53t, (200–450°C), and ΔG 2 0 H 2 0 S 2 0 T=−RTlnK 2=132000−164T, (500–800°C).

Keywords

bentonite cation exchange capacity smectite thermal analysis thermal deformation thermodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Grim, Applied Clay Mineralogy, McGraw Hill, New York 1962.Google Scholar
  2. 2.
    R. E. Grim and N. Güven, Bentonites-Geology, Mineralogy, Properties and Uses, (Developments in Sedimentology, 24.), Elsevier, New York 1978.Google Scholar
  3. 3.
    H. H. Murray, Appl. Clay Sci., 5 (1991) 379.CrossRefGoogle Scholar
  4. 4.
    H. H. Murray, Clay Miner., 34 (1999) 39.CrossRefGoogle Scholar
  5. 5.
    H. H. Murray, Appl. Clay Sci., 17 (2000) 207.CrossRefGoogle Scholar
  6. 6.
    J. M. Adams, Appl. Clay Sci., 2 (1987) 309.CrossRefGoogle Scholar
  7. 7.
    S. R. Chitnis and M. M. Sharma, React. Funct. Polym., 32 (1997) 93.CrossRefGoogle Scholar
  8. 8.
    D. W. Rutherford, C. T. Chiou and D. D. Eberl, Clay. Clay Miner., 45 (1997) 534.CrossRefGoogle Scholar
  9. 9.
    P. F. Luckham and S. Rossi, Adv. Colloid Interfac., 82 (1999) 43.CrossRefGoogle Scholar
  10. 10.
    W. F. Bradley and R. E. Grim, Am. Mineral., 36 (1951) 182.Google Scholar
  11. 11.
    G. W. Brindley, Ceramica, 24 (1978) 217.Google Scholar
  12. 12.
    T. Mozas, S. Brugue and A. Rodriguez, Clay Miner., 15 (1980) 421.CrossRefGoogle Scholar
  13. 13.
    W. T. Reicle, J. Catal., 94 (1985) 547.CrossRefGoogle Scholar
  14. 14.
    Ç. Güler and N. Sarıer, Thermochim. Acta, 159 (1990) 29.CrossRefGoogle Scholar
  15. 15.
    R. C. Joshi, G. Achari, D. Harfield and T. S. Nagaraj, J. Geotech. Eng.-ASCE., 120 (1994) 1080.CrossRefGoogle Scholar
  16. 16.
    M. Chorom and P. Rengasamy, Clays Clay Miner., 44 (1996) 783.CrossRefGoogle Scholar
  17. 17.
    D. R. Brown and C. N. Rhodes, Thermochim. Acta, 294 (1997) 33.CrossRefGoogle Scholar
  18. 18.
    M. M. Abu-Zreig, N. M. Al-Akhras and M. F. Attom, Appl. Clay Sci., 20 (2001) 129.CrossRefGoogle Scholar
  19. 19.
    A. Neaman, M. Pelletier and F. Willieras, Appl. Clay Sci., 22 (2003) 153.CrossRefGoogle Scholar
  20. 20.
    H. Noyan, M. Önal and Y. Sarıkaya, Clays Clay Miner., 54 (2006) 375.CrossRefGoogle Scholar
  21. 21.
    M. C. Wang, J. M. Benway and A. M. Arayssi, ASTM STP 1095, Philadelphia 1990. p. 1139.Google Scholar
  22. 22.
    Ö. Tan, L. Yılmaz and S. Zaimoğlu, Mater. Lett., 58 (2004) 1176.CrossRefGoogle Scholar
  23. 23.
    A. M. Coats and J. P. Redfern, Nature, 201 (1964) 68.CrossRefGoogle Scholar
  24. 24.
    Y. Tonbul and K. Yurdakoç, Turk. J. Chem., 25 (2001) 333.Google Scholar
  25. 25.
    Y. Sarıkaya, M. Önal, B. Baran and T. Alemdaroğlu, Clays. Clay Miner., 48 (2000) 557.CrossRefGoogle Scholar
  26. 26.
    P. T. Hang and G. W. Brindley, Clays Clay Miner., 18 (1970) 203.CrossRefGoogle Scholar
  27. 27.
    G. Rytwo, C. Seben, S. Nir and L. Margullies, Clays Clay Miner., 39 (1991) 551.CrossRefGoogle Scholar
  28. 28.
    J. Bujdak, M. Janek, J. Madejova and P. Komadel, Clays Clay Miner., 49 (2001) 244.CrossRefGoogle Scholar
  29. 29.
    M. Gal, J. Therm. Anal. Cal., 37 (1991) 1621.CrossRefGoogle Scholar
  30. 30.
    V. Balek, Z. Málek, S. Yariv and G. Matuschek, J. Therm. Anal. Cal., 56 (1999) 67.CrossRefGoogle Scholar
  31. 31.
    M. V. Kök and W. Smykatz-Kloss, J. Therm. Anal. Cal., 64 (2001) 1277.CrossRefGoogle Scholar
  32. 32.
    V. Hlavaty and V. Š. Fajnor, J. Therm. Anal. Cal., 67 (2002) 113.CrossRefGoogle Scholar
  33. 33.
    M. V. Kök, Energy Sources, 24 (2002) 899.CrossRefGoogle Scholar
  34. 34.
    A. Acosta, I. Iglesias, M. Aineto, M. Romero and J. Ma Rincón, J. Therm. Anal. Cal., 67 (2002) 249.CrossRefGoogle Scholar
  35. 35.
    H. Zou, M. Li, J. Shen and A. Auroux, J. Therm. Anal. Cal., 72 (2003) 209.CrossRefGoogle Scholar
  36. 36.
    M. V. Kök, Energy Sources, 26 (2004) 145.CrossRefGoogle Scholar
  37. 37.
    A. Fodor, L. Ghizdavu, A. Šuteu and A. Caraban, J. Therm. Anal. Cal., 75 (2004) 153.CrossRefGoogle Scholar
  38. 38.
    J. Ma Rincón, M. Romero, A. Hidalgo and Ma. J. Liso, J. Therm. Anal. Cal., 76 (2004) 903.CrossRefGoogle Scholar
  39. 39.
    N. Yener, M. Önal, G. Üstünışık and Y. Sarıkaya, J. Therm. Anal. Cal., 88 (2007) 813.CrossRefGoogle Scholar
  40. 40.
    H. Bayram, M. Önal, G. Üstünışık and Y. Sarıkaya, J. Therm. Anal. Cal., 89 (2007) 169.CrossRefGoogle Scholar
  41. 41.
    M. Önal and Y. Sarıkaya, J. Therm. Anal. Cal., 90 (2007) 167.CrossRefGoogle Scholar
  42. 42.
    Z. Malek, V. Balek, D. Garfinkel-Sheweky and S. Yariv, J. Therm. Anal. Cal., 53 (1997) 83.Google Scholar
  43. 43.
    M. V. Kök and W. Smykatz-Kloss, J. Therm. Anal. Cal., 64 (2001) 1271.CrossRefGoogle Scholar
  44. 44.
    R. L. Frost, Z. Ding and H. D. Ruan, J. Therm. Anal. Cal., 71 (2003) 783.CrossRefGoogle Scholar
  45. 45.
    R. L. Frost and M. L. Weier, J. Therm. Anal. Cal., 406 (2003) 221.Google Scholar
  46. 46.
    R. L. Frost, M. L. Weier, M. E. Clissold, P. A. Williams and J. T. Kloprogge, Thermochim. Acta, 407 (2003) 1.CrossRefGoogle Scholar
  47. 47.
    R.L. Frost, E. Horváth, E. Makó, J. Kristóf and A. Rédey, Thermochim. Acta, 408 (2003) 103.CrossRefGoogle Scholar
  48. 48.
    Y. Xi, Z. Ding, H. He and R. L. Frost, J. Colloid Interface Sci., 277 (2004) 116.CrossRefGoogle Scholar
  49. 49.
    S. Yariv and I. Lapides, J. Therm. Anal. Cal., 80 (2005) 11.CrossRefGoogle Scholar
  50. 50.
    Y. Xi, W. Martens, H. He and R. L. Frost, J. Therm. Anal. Cal., 81 (2005) 91.CrossRefGoogle Scholar
  51. 51.
    H. He, Z. Ding, J. Zhu, P. Yuan, Y. Xi, D. Yang and R. L. Frost, Clays Clay Miner., 53 (2005) 287.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  1. 1.Refik Saydam Hygiene Center (RSHC)Sıhhilye, AnkaraTurkey
  2. 2.Faculty of Science, Department of ChemistryAnkara UniversityTandoğanTurkey

Personalised recommendations