Skip to main content
Log in

Investigation of the rigid amorphous fraction in Nylon-6

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A three-phase model, comprising crystalline, mobile amorphous, and rigid amorphous fractions (χ c, χ MA, χ RA, respectively) has been applied in the study of semicrystalline Nylon-6. The samples studied were Nylon-6 alpha phase prepared by subsequent annealing of a parent sample slowly cooled from the melt. The treated samples were annealed at 110°C, then briefly heated to 136°C, then re-annealed at 110°C. Temperature-modulated differential scanning calorimetry (TMDSC) measurements allow the devitrification of the rigid amorphous fraction to be examined.

We observe a lower endotherm, termed the ‘annealing’ peak in the non-reversing heat flow after annealing at 110°C. By brief heating above this lower endotherm and immediately quenching in LN2-cooled glass beads, the glass transition temperature and χ RA decrease substantially, χ MA increases, and the annealing peak disappears. The annealing peak corresponds to the point at which partial de-vitrification of the rigid amorphous fraction (RAF) occurs. Re-annealing at 110°C causes the glass transition and χ RA to increase, and χ MA to decrease. None of these treatments affected the measured degree of crystallinity, but it cannot be excluded that crystal reorganization or recrystallization may also occur at the annealing peak, contributing to the de-vitrification of the rigid amorphous fraction.

Using a combined approach of thermal analysis with wide and small angle X-ray scattering, we analyze the location of the rigid amorphous and mobile amorphous fractions within the context of the Heterogeneous and Homogeneous Stack Models. Results show the homogeneous stack model is the correct one for Nylon-6. The cooperativity length (ξA) increases with a decrease of rigid amorphous fraction, or, increase of the mobile amorphous fraction. Devitrification of some of the RAF leads to the broadening of the glass transition region and shift of T g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. D. Fornes and D. R Paul, Polymer, 44 (2003) 3945.

    Article  CAS  Google Scholar 

  2. S. S. Pesetskii and B. Jurkowski, Eur. Polym. J., 41 (2005) 1380.

    Article  CAS  Google Scholar 

  3. R. Schteiber and W. S. Veeman, Macromolecules, 32 (1999) 4647.

    Article  Google Scholar 

  4. S. Y. Kwak and J. H. Kim, J. Polym. Sci., Polym. Phys. Ed., 38 (2000) 1285.

    Article  CAS  Google Scholar 

  5. H. E. Miltner, Polymer, 47 (2006) 826.

    Article  CAS  Google Scholar 

  6. M. Song, J. Appl. Polym. Sci., 81 (2001) 2779.

    Article  CAS  Google Scholar 

  7. P. P. Huo and P. Cebe, Colloid Polym. Sci., 25 (1992) 902.

    CAS  Google Scholar 

  8. X. Lu and P. Cebe, Polymer, 37 (1996) 4857.

    Article  CAS  Google Scholar 

  9. H. Xu and P. Cebe, Macromolecules, 37 (2004) 2797.

    Article  CAS  Google Scholar 

  10. A. Minakov, D. Mordvintsev, R. Tol and C. Schick, Thermochim Acta, 442 (2006) 25.

    Article  CAS  Google Scholar 

  11. J. Park, M. Pyda and B. Wunderlich, Macromolecules, 36 (2004) 495.

    Google Scholar 

  12. C. Schick, A. Wurm and A. Mohammed, Thermochim. Acta, 396 (2003) 119.

    Article  CAS  Google Scholar 

  13. C. Schick, A. Wurm and A. Mohammed, Colloid Polym. Sci., 279 (2001) 800.

    Article  CAS  Google Scholar 

  14. C. Alcarez and I. Sics, Polymer, 45 (2004) 3953.

    Article  CAS  Google Scholar 

  15. B. B. Sauer and B. S. Hsiao, Polymer, 36 (1995) 2553.

    Article  CAS  Google Scholar 

  16. B. Hahn and J. Wendorff, Macromolecules, 18 (1985) 718.

    Article  CAS  Google Scholar 

  17. B. Hahn and V. Percec, Macromolecules, 20 (1987) 2961.

    Article  CAS  Google Scholar 

  18. B. Natesan and P. Cebe, J. Polym. Sci., Poly. Phys. Ed., 42 (2004) 777.

    Article  CAS  Google Scholar 

  19. C. Schick and E. Donth, Phys. Scr., 43 (1991) 243.

    Article  Google Scholar 

  20. MATLAB™ The Mathworks, Natick, MA, 2000.

  21. H. Suzuki, J. Grebowicz and B. Wunderlich, Br. Polym. J., 17 (1985) 1.

    Article  CAS  Google Scholar 

  22. ATHAS data bank, http://web.utk.edu/athas/databank/amide/nylon6/, Ed., M. Pyda, 1997.

  23. V. B. F. Mathot, Calorimetry and Thermal Analysis of Polymers, Hanser Gardner Publications, Inc., Cincinnati, 1994.

    Google Scholar 

  24. B. Wunderlich, J. Therm. Anal. Cal., 85 (2006) 179

    Article  CAS  Google Scholar 

  25. J. Park, W. Qui and M. Pyda, J. Therm. Anal. Cal. 82 (2005) 565.

    Article  CAS  Google Scholar 

  26. H. Xu and P. Cebe, J. Polym. Sci, Poly. Phys. Ed., 42 (2004) 777.

    Article  CAS  Google Scholar 

  27. G. Adam and J. H. Gibbs, J. Chem. Phys., 43 (1965) 139.

    Article  CAS  Google Scholar 

  28. A. M. Jonas and T. P. Russell, Macromolecules, 28 (1995) 8491.

    Article  CAS  Google Scholar 

  29. C. Fougnises and Dosiere, Macromolecules, 31 (1998) 6226.

    Article  Google Scholar 

  30. H. G. Haubruge and A. M Jonas, Macromolecules, 37 (2004) 126.

    Article  CAS  Google Scholar 

  31. N. Vasanthan, J. Polym. Sci., Poly. Phys. Ed., 41 (2003) 2870.

    Article  CAS  Google Scholar 

  32. J. Dobbertin, A. Hensel and C. Schick, J. Therm. Anal. Cal., 47 (1996) 1027.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peggy Cebe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Cebe, P. Investigation of the rigid amorphous fraction in Nylon-6. J Therm Anal Calorim 89, 417–425 (2007). https://doi.org/10.1007/s10973-007-8215-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-007-8215-4

Keywords

Navigation