Journal of Thermal Analysis and Calorimetry

, Volume 91, Issue 1, pp 219–223 | Cite as

Thermal stability and glass transition behavior of PANI/γ-Al2O3 composites

  • Y. -N. Qi
  • F. Xu
  • H. -J. Ma
  • L. -X. Sun
  • J. Zhang
  • T. Jiang
Regular Papers Organics/Polymers


Polyaniline/γ-Al2O3 (PANI/γ-Al2O3) composites were synthesized by in-situ polymerization at the presence of HCl as dopant by adding γ-Al2O3 nanoparticles into aniline solution. The composites were characterized by FTIR and XRD. The thermogravimetry (TG) and modulated differential scanning calorimetry (MDSC) were used to study the thermal stability and glass transition temperature (T g) of the composites, respectively.

The results of FTIR showed that γ-Al2O3 nanoparticles connected with the PANI chains and affected the absorption characteristics of the composite through the interaction between PANI and nano-sized γ-Al2O3. And the results of XRD indicated that the peaks intensity of the PANI/γ-Al2O3 composite were weaker than that of the pure PANI. From TG and derivative thermogravimetry (DTG) curves, it was found that the pure PANI and the PANI/γ-Al2O3 composites were all one step degradation. And the PANI/γ-Al2O3 composites were more thermal stable than the pure PANI. The MDSC curves showed that the nano-sized γ-Al2O3 heightened the glass transition temperature (T g) of PANI.


glass transition PANI/γ-Al2O3 composites thermal stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X. Y. Zhang, W. J. Goux and S. K. Manohar, J. Am. Chem. Soc., 126 (2004) 4502.CrossRefGoogle Scholar
  2. 2.
    H. Yan, N. Sada and N. Toshima, J. Therm. Anal. Cal., 69 (2002) 881.CrossRefGoogle Scholar
  3. 3.
    M. Day, A. V. Nawaby and X. Liao, J. Therm. Anal. Cal., 86 (2006) 623.CrossRefGoogle Scholar
  4. 4.
    D. C. Schnitzler, M. S. Meruvia, I. A. Hummelgen and A. J. G. Zarbin, Chem. Mater., 15 (2003) 4658.CrossRefGoogle Scholar
  5. 5.
    Y. Z. Long, Z. J. Chen, J. L. Duvail, Z. M. Zhang and M. X. Wan, Physica. B., 370 (2005) 121.CrossRefGoogle Scholar
  6. 6.
    S. X. Wang, L. X. Sun, Z. C. Tan, F. Xu and Y. S. Li, J. Therm. Anal. Cal., 89 (2007) 609.CrossRefGoogle Scholar
  7. 7.
    T. K. Sarma and A. Chattopadhyay, Langmuir, 20 (2004) 4733.CrossRefGoogle Scholar
  8. 8.
    W. G. Li, Q. X. Jia and H. L. Wang, Polymer, 47 (2006) 23.CrossRefGoogle Scholar
  9. 9.
    H. Fukushima, L. T. Drzal, B. P. Rook and M. J. Rich, J. Therm. Anal. Cal., 85 (2006) 235.CrossRefGoogle Scholar
  10. 10.
    S. J. Park, S. Y. Park, M. S. Cho, H. J. Choi and M. S. Jhon, Synth. Met., 152 (2005) 337.CrossRefGoogle Scholar
  11. 11.
    T. M. Wu and Y. W. Lin, Polymer, 47 (2005) 3576.CrossRefGoogle Scholar
  12. 12.
    J. G. Deng, X. B. Ding, W. C. Zhang, Y. X. Peng, J. H. Wang, X. P. Long, P. Li and A. S. C. Chan, Eur. Polym. J., 38 (2002) 2497.CrossRefGoogle Scholar
  13. 13.
    M. Avella, S. Cosco, M. L. Di Lorenzo, E. Di Pace and M. E. Errico, J. Therm. Anal. Cal., 80 (2005) 131.CrossRefGoogle Scholar
  14. 14.
    S. J. Yoshimoto, F. Ohashi and T. Kameyama, J. Polym. Sci: Part B: Polym. Phys., 43 (2005) 2705.CrossRefGoogle Scholar
  15. 15.
    S. S. Ray and M. Biswas, Synth. Met., 108 (2000) 231.CrossRefGoogle Scholar
  16. 16.
    Y. J. Yu, B. Che, Z. H. Si, L. Li, W. Chen and G. Xue, Synth. Met., 150 (2005) 271.CrossRefGoogle Scholar
  17. 17.
    L. L. Ding, X. W. Wang and R. V. Gregory, Synth. Met., 104 (1999) 73.CrossRefGoogle Scholar
  18. 18.
    S. Kazim, V. Ali, M. Zulfequar, M. M. Haq and M. Husain, Curr. Appl. Phys., 7 (2007) 68.CrossRefGoogle Scholar
  19. 19.
    B. J. Ash, L. S. Schadler and R. W. Siegel, Mater. Lett., 55 (2002) 83.CrossRefGoogle Scholar
  20. 20.
    J. X. Huang and R. B. Kaner, J. Am. Chem. Soc., 126 (2004) 851.CrossRefGoogle Scholar
  21. 21.
    T. K. Sarma and A. Chattopadhyay, Langmuir, 20 (2004) 4733.CrossRefGoogle Scholar
  22. 22.
    P. K. Khanna, M. V. Kulkarni, N. Singh and S. P. Lonkar, Mater. Chem. Phys., 95 (2006) 24.CrossRefGoogle Scholar
  23. 23.
    Y. J. He, Appl. Surf. Sci., 249 (2005) 1.CrossRefGoogle Scholar
  24. 24.
    S. X. Wang, Z. C. Tan, Y. S. Li, L. X. Sun and T. Zhang, Thermochim. Acta., 441 (2006) 191.CrossRefGoogle Scholar
  25. 25.
    S. P. Armes, S. Gottesfeld, J. G. Beery, F. Garzon and S. F. Agnew, Polymer, 32 (1991) 2325.CrossRefGoogle Scholar
  26. 26.
    D. Lee and K. Char, Polym. Degrad. Stab., 75 (2002) 555.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • Y. -N. Qi
    • 1
    • 3
  • F. Xu
    • 1
  • H. -J. Ma
    • 2
    • 3
  • L. -X. Sun
    • 1
  • J. Zhang
    • 1
    • 3
  • T. Jiang
    • 1
    • 3
  1. 1.Materials and Thermochemistry Laboratory, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianP. R.China
  2. 2.Laboratory of Applied Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianP. R. China
  3. 3.Education School of Chinese Academy of ScienceChinese Academy of SciencesBeijingP. R. China

Personalised recommendations