Advertisement

Can clustering of liquid water and thermal analysis be of assistance for better understanding of biological germplasm exposed to ultra-low temperatures

  • J. Šesták
  • J. Zámečník
regular

Abstract

Plausible effect of clustering of undercooled liquid water (pentamer configuration, icosahedra formation) is discussed showing water continuous but non-periodic patterns and its impact to the either formation of ice-crystals or ice-glass, particularly when making contact with plants. These processes are viable for the cryogenic storage of biological germplasm and subject for thermoanalytical studies aimed to the determination of glass transition temperatures.

Keywords

cryogenics glass transition temperature icosahedron natural freezing non-periodic continuum models pentamers plants thermal analysis undercooling water clusters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Šesták, J,  et al. 2005‘Science of Heat and Thermophysical Studies: a generalized approach to thermal analysis’ElsevierAmsterdamGoogle Scholar
  2. 2.
    J. Zámečník and A. Bilavčík, Proceedings of the 13th Congress of the Federation of Europe Societies of Plant Physiology. Heraklion, Crete Greece 2002, p.773.Google Scholar
  3. 3.
    Zámečník, J, Grospietsch, M, Bilavčík, A 2001Cryobiology43328Google Scholar
  4. 4.
    Zámečník, J, Bilavčík, A, Faltus, M, Šesták, J 2003CryoLetters24412Google Scholar
  5. 5.
    A. Bilavčík, J. Zámečník, M. Láznička and J. Šesták, Proceedings of: 8th European Symposium on Thermal Analysis and Calorimetry (ESTAC), Barcelona, August 2002, Abstracts p. 56.Google Scholar
  6. 6.
    Chvoj, Z, Šesták, J, Tříska, A,  et al. 1991Kinetic Phase Diagrams: non-equilibrium phase transitionsElsevierAmsterdamGoogle Scholar
  7. 7.
    Buitink, J, Leprince, O 2004Cryobiology48215CrossRefGoogle Scholar
  8. 8.
    R. Penrose, The Emperor’s NewMind Oxford 1989; M. Gardner, Penrose Tiles to Trapdoor Ciphers, New York 1989; H. O. Peitgen, H. Jurgen and D. Saupe, Chaos and Fractals: new frontiers of science, Springer, New York 1992.Google Scholar
  9. 9.
    Šesták, J,  et al. 2004Heat, thermal analysis and societyNucleus Publ. HouseHradec KraloveGoogle Scholar
  10. 10.
    Mareš, JJ, Stávek, J, Šesták, J 2004J. Chem. Phys.1211499CrossRefGoogle Scholar
  11. 11.
    Cho, CH, Singh, S, Robinson, GW 1996Faraday Discuss.10319CrossRefGoogle Scholar
  12. 12.
    Giovambattista, N, Buldyrev, SV, Stanley, HE, Starr, FW 2005Physical Review7211539Google Scholar
  13. 13.
    Brodskaya, AV, Laaksonen, EN 2002Molecular Physics100951Google Scholar
  14. 14.
    Eisenberg, D, Kauzmann, W,  et al. 1969The structure and properties of waterOxford University PressLondonGoogle Scholar
  15. 15.
    Šesták, J, Mackenzie, RC 2001J. Therm. Anal. Cal.64129CrossRefGoogle Scholar
  16. 16.
    Chaplin, MF 2000Biophys. Chem.83211CrossRefGoogle Scholar
  17. 17.
    Swenson, J, Jansson, H, Bergman, R 2006Phys. Rev. Lett.96240Google Scholar
  18. 18.
    Mishima, O, Calvert, LD, Whalley, E 1985Nature31476CrossRefGoogle Scholar
  19. 19.
    Kusalik, PG, Svishchev, IM 1994Science2651219CrossRefGoogle Scholar
  20. 20.
    Mashimo, S 1994J. Non-Cryst. Solids172/1741117CrossRefGoogle Scholar
  21. 21.
    Mareš, JJ, Šesták, J 2005J. Therm. Anal. Cal.82681CrossRefGoogle Scholar
  22. 22.
    Suga, H 1997Thermochim. Acta300117CrossRefGoogle Scholar
  23. 23.
    Bartell, LS 1997J. Phys. Chem.1017573Google Scholar
  24. 24.
    E. N. Ashworth and M. E. Wisniewski, Proceedings ‘Breeding fruit crops for cold climates’, 85th ASHS Annual Meeting/33rd CSHS Annual Meeting East Lansing, Mich. 1988. HortSci, 26 (1991) 501.Google Scholar
  25. 25.
    Burke, MJ, Gusta, LV, Quamme, HA, Weiser, CJ 1976Ann. Rev. Plant Physiol.27507CrossRefGoogle Scholar
  26. 26.
    Malone, SR, Ashworth, EN 1991Plant Physiol.95871CrossRefGoogle Scholar
  27. 27.
    Ristic, Z, Ashworth, EN 1994Plant Physiol.104737Google Scholar
  28. 28.
    Warmund, MR, George, MF, Cumbie, BG 1988J. Am. Soc. Hort. Sci.113418Google Scholar
  29. 29.
    Bilavčík, A, Zámečník, J 1996Biologia5162Google Scholar
  30. 30.
    Sakai, A 1982Cell Physiol.231219Google Scholar
  31. 31.
    Sakai, A 1979Plant Cell Physiol.201381Google Scholar
  32. 32.
    Chalker-Scott, L 1992Ann. Botany70409Google Scholar
  33. 33.
    A. G. Hirsh, R. J. Williams and H. T. Meryman, Populus. Plant Physiol., 79 (1985) 41, Cryobiology, 24 (1987) 241.Google Scholar
  34. 34.
    Ishikawa, M, Sakai, A,  et al. 1982‘Characteristics of freezing avoidance in comparison with freezing tolerance: a demonstration of extraorgan freezing’ In Plant Cold Hardiness and Freezing Stress. Mechanisms and Crop ImplicationsAcademic PressNew York325P. H. Li and A. Sakai, EdsGoogle Scholar
  35. 35.
    J. F. K. Schawe, Proceedings of NATAS’06, Bowling Green, USA 2006.Google Scholar
  36. 36.
    Sikora, A, Dupanov, VO, Kratochvíl, J, Zámečník, J 2007J. Macromol. Sci., B: Physics4671CrossRefGoogle Scholar
  37. 37.
    J. Šesták, Proceedings ‘Languages of science: Where metaphors and models meet’, V. Pliska, G. Folkers and P. Kouba, Eds, Collegium Helveticum, ETH, Zurich 2007, in print.Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of PhysicsAcademy of Sciences of the Czech RepublicPraha 6Czech Republic
  2. 2.Research Institute of Crop ProductionPraha 6Czech Republic

Personalised recommendations