Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 89, Issue 2, pp 427–440 | Cite as

Thermal decomposition mechanisms common to polyurethane, epoxy, poly(diallyl phthalate), polycarbonate and poly(phenylene sulfide)

  • K. L. Erickson
Article

Abstract

Thermal decomposition of polyurethane, epoxy, poly(diallyl phthalate), polycarbonate, and poly(phenylene sulfide) was examined using a combination of thermal and chemical analysis techniques. Thermal gravimetric analysis with simultaneous analysis of evolved gases by Fourier transform infrared spectroscopy, differential scanning calorimetry, and gas chromatography coupled with Fourier transform infrared spectroscopy were used to obtain rate data, determine enthalpy changes, and identify decomposition products. Examination of the evolved decomposition products indicated a common set of chain scission mechanisms involving the aromatic moieties in each of the polymer materials studied.

Keywords

decomposition epoxy polycarbonate poly(diallyl phthalate) poly(phenylene sulphide) polyurethane 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL8500.Google Scholar
  2. 2.
    D. Drysdale, An Introduction to Fire Dynamics, 2nd Ed., John Wiley and Sons, Chichester 2002.Google Scholar
  3. 3.
    V. Babrauskas and S. J. Grayson, Heat Release in Fires, Chapman and Hall, London 1996.Google Scholar
  4. 4.
    G. L. Nelson and C. A. Wilkie (Eds), Fire and Polymers: Materials and Solutions for Hazard Prevention, ACS symposium Series, American Chemical Society, Washington D. C. 2001.Google Scholar
  5. 5.
    G. L. Nelson and C. A. Wilkie, (Eds) Fire and Polymers IV: Materials and Solutions for Hazard Prevention, ACS symposium Series, American Chemical Society, Washington D. C. 2006.Google Scholar
  6. 6.
    K. L. Erickson, S. M. Trujillo, K. R. Thompson, A. C. Sun, M. L. Hobbs and K. J. Dowding in Computational Methods in Materials Characterization, A. A. Mammoli and C. A. Brebbia, WIT Press, Southhampton UK 2004.Google Scholar
  7. 7.
    A. C. Sun, K. L. Erickson, M. L. Hobbs, D. Adolf and M. Stavig, Computational Methods in Materials Characterization, A. A. Mammoli and C. A. Brebbia, (Eds), WIT Press, Southhampton UK 2004.Google Scholar
  8. 8.
    M. L. Hobbs and G. H. Lemmon, Computational Methods in Materials Characterization, A. A. Mammoli and C. A. Brebbia, Eds, WIT Press, Southhampton, UK, (2004).Google Scholar
  9. 9.
    M. L. Hobbs, K. L. Erickson and T. Y. Chu, Polym. Degrad. Stab., 69 (2000) 47.CrossRefGoogle Scholar
  10. 10.
    S. L. Madorsky, Thermal Degradation of Organic Polymers, Interscience Publishers, a division of John Wiley and Sons, New York 1964.Google Scholar
  11. 11.
    A. Ravve, Principles of Polymer Chemistry, 2nd Ed., Kluwer Academic/Plenum Publishers, New York 2000, pp. 581–616.Google Scholar
  12. 12.
    P. J. Haines, Ed., Principles of Thermal Analysis and Calorimetry, Royal Society of Chemistry, Cambridge 2002.Google Scholar
  13. 13.
    M. Sorai, Ed., Comprehensive Handbook of Calorimetry and Thermal Analysis, John Wiley and Sons, West Sussex, England 2004.Google Scholar
  14. 14.
    J. Šesták, Heat, Thermal Analysis and Society, Nucleus HK 2004.Google Scholar
  15. 15.
    V. F. Nicolette, K. L. Erickson and B. E. Vembe, in Proceedings of Interflam 2004, 10th International Conference on Fire Science and Engineering, Edinburgh, Scotland, July 5–7, 2004, Interscience Communications Ltd. London.Google Scholar
  16. 16.
    B. E. Vembe, V. F. Nicolette and K. L. Erickson, in Proceedings of International Technical Conference: Computational Simulation Models in Fire Engineering and Research, hosted by the University of Cantabria (Spain), October 2004.Google Scholar
  17. 17.
    H. Polli, L. A. M. Pontes, M. J. B. Souza, V. J. Fernandes Jr. and A. S. Araujo, J. Therm. Anal. Cal., 86 (2006) 469.CrossRefGoogle Scholar
  18. 18.
    D. K. Dash, S. K. Sahu and P. L. Nayak, J. Therm. Anal. Cal., 86 (2006) 517.CrossRefGoogle Scholar
  19. 19.
    M. Gao, C. Y. Sun and C. X. Wang, J. Therm. Anal. Cal., 85 (2006) 765.CrossRefGoogle Scholar
  20. 20.
    V. Alvarez, E. Rodriguez and A. Vázquez, J. Therm. Anal. Cal., 85 (2006) 383.CrossRefGoogle Scholar
  21. 21.
    K. Pielichowski and B. Świerz-Motysia, J. Therm. Anal. Cal., 83 (2006) 207.CrossRefGoogle Scholar
  22. 22.
    R. López-Fonseca, I. Landa, M. A. Gutiérrez-Ortiz and J. R. González-Velasco, J. Therm. Anal. Cal., 80 (2005) 65.CrossRefGoogle Scholar
  23. 23.
    K. Pielichowski and B. Janowski, J. Therm. Anal. Cal., 80 (2005) 147.CrossRefGoogle Scholar
  24. 24.
    Z. Y. Ren, W. Y. Liu, Y. M. Hou, L. K. Zhu, L. K. Chang and D. Z. Ma, J. Therm. Anal. Cal., 63 (2001) 153.CrossRefGoogle Scholar
  25. 25.
    I. M. M. Kenawy, M. A. H. Hafez and Kh. S. El-Said, J. Thermal Anal., 42 (1994) 1143.CrossRefGoogle Scholar
  26. 26.
    A. M. L. Silva, R. W. Li, C. J. R. Matos and J. Gruber, J. Therm. Anal. Cal., 59 (2000) 675.CrossRefGoogle Scholar
  27. 27.
    R. Kotsilkova, V. Petkova and Y. Pelovski, J. Therm. Anal. Cal., 64 (2001) 591.CrossRefGoogle Scholar
  28. 28.
    A. F. Naves, P. M. Kosaka, J. R. Matos and D. F. S. Petri, J. Therm. Anal. Cal., 79 (2005) 389.CrossRefGoogle Scholar
  29. 29.
    L. Šlusarski and G. Janowska, J. Thermal Anal., 19 (1980) 435.CrossRefGoogle Scholar
  30. 30.
    G. Liptay, J. Nagy, J. Ch. Weis and A. Borbély-Kuszmann, J. Thermal Anal., 32 (1987) 1421.CrossRefGoogle Scholar
  31. 31.
    H. Abematsu, M. Tsuchiya, Y. Iseri and T. Kojima, J. Therm. Anal. Cal., 56 (1999) 1093.CrossRefGoogle Scholar
  32. 32.
    H. S. Kim, H. S. Yang, H. J. Kim and H. J. Park, J. Therm. Anal. Cal., 76 (2004) 395.CrossRefGoogle Scholar
  33. 33.
    Y. N. Bolbukh, V. A. Tertykh and B. Gawdzik, J. Therm. Anal. Cal., 86 (2006) 125.CrossRefGoogle Scholar
  34. 34.
    L. Núñez-Regueira, M. Villanueva and I. Fraga-Rivas, J. Therm. Anal. Cal., 83 (2006) 727.CrossRefGoogle Scholar
  35. 35.
    L. Núñez and M. Villanueva, J. Therm. Anal. Cal., 80 (2005) 141.CrossRefGoogle Scholar
  36. 36.
    B. Howell and J. Zhang, J. Therm. Anal. Cal., 83 (2006) 83.CrossRefGoogle Scholar
  37. 37.
    D. Chambree, C. Idioiu, E. Segal and A. Cesáro, J. Therm. Anal. Cal., 82 (2005) 803.CrossRefGoogle Scholar
  38. 38.
    H. Polli, L. A. M. Pontes and A. S. Araujo, J. Therm. Anal. Cal., 79 (2005) 383.CrossRefGoogle Scholar
  39. 39.
    J. M. Criado, L. A. Pérez-Maqueda and P. E. Sánchez-Jiménez, J. Therm. Anal. Cal., 82 (2005) 671.CrossRefGoogle Scholar
  40. 40.
    J. M. Criado and L. A. Pérez-Maqueda, J. Therm. Anal. Cal., 84 (2005) 453.Google Scholar
  41. 41.
    J. Rychlý, L. Matisová-Rychlá and M. Vavreková, J. Thermal Anal., 25 (1982) 423.CrossRefGoogle Scholar
  42. 42.
    P. Budrugeac and E. Segal, J. Thermal Anal., 53 (1998) 269.CrossRefGoogle Scholar
  43. 43.
    I. A. Schneider and A. Cs. Bíró, J. Thermal Anal., 5 (1973) 293.CrossRefGoogle Scholar
  44. 44.
    X.-R. Li and H. Koseki, J. Therm. Anal. Cal., 85 (2006) 637.CrossRefGoogle Scholar
  45. 45.
    A. Gröbler and T. Kada, J. Thermal Anal., 5 (1973) 407.CrossRefGoogle Scholar
  46. 46.
    A. K. Galwey, J. Therm. Anal. Cal., 86 (2006) 267.CrossRefGoogle Scholar
  47. 47.
    B. A. Howell, J. Therm. Anal. Cal., 85 (2006) 165.CrossRefGoogle Scholar
  48. 48.
    B. A. Howell and J. A. Ray, J. Therm. Anal. Cal., 83 (2006) 63.CrossRefGoogle Scholar
  49. 49.
    S. Vyazovkin, J. Therm. Anal. Cal., 83 (2006) 45.CrossRefGoogle Scholar
  50. 50.
    M. E. Brown, J. Therm. Anal. Cal., 82 (2005) 665.CrossRefGoogle Scholar
  51. 51.
    P. Šimon, J. Therm. Anal. Cal., 82 (2005) 651.CrossRefGoogle Scholar
  52. 52.
    P. Šimon, J. Therm. Anal. Cal., 79 (2005) 703.CrossRefGoogle Scholar
  53. 53.
    T. Ozawa, J. Therm. Anal. Cal., 82 (2005) 687.CrossRefGoogle Scholar
  54. 54.
    T. Kojima, M. Tsuchiya, K. Ishimaru and T. Yamada, J. Therm. Anal. Cal., 80 (2005) 137.CrossRefGoogle Scholar
  55. 55.
    R. Bigda and A. Mianowski, J. Therm. Anal. Cal., 84 (2005) 453.CrossRefGoogle Scholar
  56. 56.
    O. F. Shlensky, J. Thermal Anal., 44 (1995) 1113.CrossRefGoogle Scholar
  57. 57.
    O. F. Shlensky, L. N. Aksenov and A. G. Shashkov, Thermal Decomposition of Materials: Effect of Highly Intensive Heating, Elsevier, Amsterdam 1991.Google Scholar
  58. 58.
    P. Rybiński, G. Janowska, W. Antkowicz and S. Krauze, J. Therm. Anal. Cal., 81 (2005) 9.CrossRefGoogle Scholar
  59. 59.
    J. Chruściel, G. Janowska, P. Rybiński and L. Ślusarski, J. Therm. Anal. Cal., 84 (2006) 344.Google Scholar
  60. 60.
    B. A. Howell, D. A Spears and P. B. Smith, J. Therm. Anal. Cal., 85 (2006) 115.CrossRefGoogle Scholar
  61. 61.
    F. S. M. Sinfrônio, A. G. Souza, M. G. Santos Ieda, V. J. Fernandes Jr., Cs. Novák and Zs. Éhen, J. Therm. Anal. Cal., 85 (2006) 391.CrossRefGoogle Scholar
  62. 62.
    A. Pappa, K. Mikedi, N. Tzamtzis and M. Statheropoulos, J. Therm. Anal. Cal., 84 (2006) 655.CrossRefGoogle Scholar
  63. 63.
    K. Pielichowski, J. Therm. Anal. Cal., 54 (1998) 171.CrossRefGoogle Scholar
  64. 64.
    K. Pielichowski and L. Stoch, J. Therm. Anal. Cal., 45 (1995) 407.Google Scholar
  65. 65.
    C. N. Caşcaval, N. Hurduc and Ig. C. Poinescu, J. Thermal Anal., 34 (1988) 311.CrossRefGoogle Scholar
  66. 66.
    W. Xie and W.-P. Pan, J. Therm. Anal. Cal., 65 (2001) 669.CrossRefGoogle Scholar
  67. 67.
    W. Xie, W.-P. Pan and K. C. Chuang, J. Therm. Anal. Cal., 64 (2001) 477.CrossRefGoogle Scholar
  68. 68.
    T. Tsugoshi, T. Nagaoka, K. Hino, T. Arii, M. Inoue, Y. Shiokawa and K. Watari, J. Therm. Anal. Cal., 80 (2005) 787.CrossRefGoogle Scholar
  69. 69.
    OMNIC software and Nicolet vapor phase FTIR library, Thermo-Electron Corp., Madison, Wisconsin.Google Scholar
  70. 70.
    K. L. Erickson, Proceedings of SAMPE 2006, Long Beach, Ca, April 30–May 5, 2005.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  • K. L. Erickson
    • 1
  1. 1.Sandia National Laboratories [1]AlbuquerqueUSA

Personalised recommendations