Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 89, Issue 2, pp 363–366 | Cite as

Thermal change of Alq3, tris(8-hydroxyquinolinato) aluminum(III) studied by TG and XRD-DSC

  • M. H. Wang
  • Y. Sawada
  • K. Saito
  • S. Horie
  • T. Uchida
  • M. Ohtsuka
  • S. Seki
  • S. Kobayashi
  • T. Arii
  • A. Kishi
  • T. Takahashi
  • Y. Nishimoto
  • T. Wakimoto
  • K. Monzen
  • I. Kashima
  • T. Nishikiori
  • L. X. Sun
  • R. Ozao
Article

Abstract

The thermal change of the tris(8-hydroxyquinolinato)aluminum (Alq3) is currently investigated by XRD-DSC and TG. The phase transition of Alq3 from α-phase to γ-phase takes place at 643–669 K. A very sharp peak with the peak temperature at approx. 709 K is ascribed to the melting of the Alq3. The decomposition of the Alq3 was observed accompanied with the melting and evaporation at >703K. The effect of the atmospheres on the mass loss procedure was studied by TG. It was found that thermal process of Alq3 was strongly influenced by the partial pressure of water vapor in the atmosphere instead of oxygen.

Keywords

Alq3 mass loss phase change TG XRD-DSC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51 (1987) 913.CrossRefGoogle Scholar
  2. 2.
    R. F. Service, Science, 267 (1995) 1262.CrossRefGoogle Scholar
  3. 3.
    T. Uchida, S. Kaneta, M. Ichihara, M. Ohtsuka, T. Otomo and D. R. Marx, Jpn. J. Appl. Phys., 44 (2005) L282.CrossRefGoogle Scholar
  4. 4.
    T. Uchida, T. Mimura, M. Ohtsuka, T. Otomo, M. Ide, A. Shida and Y. Sawada, Thin Solid Films, 496 (2006) 75.CrossRefGoogle Scholar
  5. 5.
    C. W. Tang, S. A. VanSlyke and C. H. Chen, J. Appl. Phys., 65 (1989) 3610.CrossRefGoogle Scholar
  6. 6.
    J. Shi, Appl. Phys. Lett., 70 (1997) 1665.CrossRefGoogle Scholar
  7. 7.
    L. Hung, C. W. Tang and M. Mason, Appl. Phys. Lett., 70 (1997) 152.CrossRefGoogle Scholar
  8. 8.
    H. Aziz, Z. Popovic, N. X. Hu, A. Hor and G. Xu, Science, 283 (1999) 1900.CrossRefGoogle Scholar
  9. 9.
    P. Burrows, Z. Shen, V. Bulovic, D. McCarty, S. Forrest, J. Cronin and M. Thompson, J. Appl. Phys., 79 (1996) 7991.CrossRefGoogle Scholar
  10. 10.
    S. Berleb and W. Brütting, Phys. Rev. Lett., 89 (2002) 286601.Google Scholar
  11. 11.
    M. Cölle and W. Brütting, Phys. Stat. Sol., 201 (2004) 1095.CrossRefGoogle Scholar
  12. 12.
    M. Colle and W. Brutting, Adv. Funct. Maters, 13 (2003) 108.CrossRefGoogle Scholar
  13. 13.
    M. W. Shin, H. C. Lee, K. S. Kim, S. H. Lee and J. C. Kim, Thin Solid Films, 363 (2000) 244.CrossRefGoogle Scholar
  14. 14.
    F. Papadimitrakopoulos, X. M. Zhang, D. L. Thomsen and K. A. Higginson, Chem. Mater., 8 (1996) 1363.CrossRefGoogle Scholar
  15. 15.
    F. Papadimitrakopoulos and X. M. Zhang, Synth. Met., 85 (1997) 1221.CrossRefGoogle Scholar
  16. 16.
    M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi and A. Sironi, J. Am. Chem. Soc., 122 (2000) 5147.CrossRefGoogle Scholar
  17. 17.
    Sawada, Rigaku J. (in Japanese), 37 (2006) 20.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  • M. H. Wang
    • 1
  • Y. Sawada
    • 1
  • K. Saito
    • 1
  • S. Horie
    • 1
  • T. Uchida
    • 1
  • M. Ohtsuka
    • 1
  • S. Seki
    • 1
  • S. Kobayashi
    • 1
  • T. Arii
    • 2
  • A. Kishi
    • 2
  • T. Takahashi
    • 2
  • Y. Nishimoto
    • 3
  • T. Wakimoto
    • 4
  • K. Monzen
    • 4
  • I. Kashima
    • 4
  • T. Nishikiori
    • 4
  • L. X. Sun
    • 5
  • R. Ozao
    • 6
  1. 1.Tokyo Polytechnic UniversityKanagawaJapan
  2. 2.Rigaku Corp.TokyoJapan
  3. 3.Kanagawa UniversityKanagawaJapan
  4. 4.Optrex Co.Kanagawa, YokohamaJapan
  5. 5.Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  6. 6.SONY Institute of Higher EducationKanagawaJapan

Personalised recommendations