Journal of Thermal Analysis and Calorimetry

, Volume 90, Issue 3, pp 823–826 | Cite as

Non-isothermal kinetic for lyophilized leachate from sanitary landfill and composting usine

  • Evaneide Nascimento Lima
  • Marisa Spirandeli Crespi
  • C. A. Ribeiro
  • Sonia de Almeida


Leachate samples from a sanitary landfill of Araraquara city and composting usine of Vila Leopoldina, São Paulo, Brazil were lyophilized to remove the water content. TG/DTG curves at different heating rates were recorded. The second step of the thermal decomposition of leachate from the Araraquara landfill (CB1), from the composting usine from Vila Leopoldina (CB2) from the organic phase extracted (FO) and aqueous phase (FA) were all kinetically evaluated using the non-isothermal method.

By Flynn-Wall isoconversional method the following values were obtained: E=234±3.65 kJ mol−1 and logA=29.7±0.58 min−1 for CB1; E=129±1.66 kJ mol−1 and logA=11.8±0.10 min−1 for CB2; E=51.6±1.35 kJ mol−1 and logA=6.09±0.09 min−1 for FO and E=76.91±6.33 kJ mol−1 and logA=8.88±0.7 min−1 for FA with 95% confidence level. Applying the procedures of Málek and Koga, SB kinetic model (Šesták-Berggren) is the most appropriate to describe the decomposition of CB1, CB2, FO and FA.


kinetic parameters leachate non-isothermal kinetic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Alves, Saneamento Ambiental no103, março/abril, 2004.Google Scholar
  2. 2.
  3. 3.
    D. Trebouet, P. S. Jaquen and F. Quemeneur, Water Res., 35 (2001) 2935.CrossRefGoogle Scholar
  4. 4.
    C. L. S. Sisinno and J. C. Moreira, Cad. Saúde Pub., 12 (1996).Google Scholar
  5. 5.
    A. N. Garcia and R. F. Marcilla, Thermochim. Acta, 254 (1995) 277.CrossRefGoogle Scholar
  6. 6.
    A. R. Silva, M. S. Crespi, C. A. Ribeiro, S. C. Oliveira and R. S. Silva, J. Therm. Anal. Cal., 75 (2004) 401.CrossRefGoogle Scholar
  7. 7.
    J. H. Flynn and J. Wall, Polym. Lett., 4 (1996) 323.CrossRefGoogle Scholar
  8. 8.
    T. Ozawa, Bull. Chem. Soc. Jpn., 38 (1965) 1881.CrossRefGoogle Scholar
  9. 9.
    T. Ozawa, J. Thermal Anal., 2 (1970) 301.CrossRefGoogle Scholar
  10. 10.
    T. Ozawa, Polym., 12 (1971) 150.CrossRefGoogle Scholar
  11. 11.
    T. Ozawa, Bull. Chem. Soc. Jpn., 57 (1984) 639.CrossRefGoogle Scholar
  12. 12.
    T. Ozawa, Thermochim. Acta, 100 (1986) 109.CrossRefGoogle Scholar
  13. 13.
    N. Koga, Thermochim Acta, 258 (1995) 145.CrossRefGoogle Scholar
  14. 14.
    N. Koga, S. Takemoto, T. Nakamura and H. Tanaka, Thermochim. Acta, 283 (1996) 81.CrossRefGoogle Scholar
  15. 15.
    J. Málek, J. Sesták, F. Roquerol, J. M. Rouquerol, J. M. Criado and A. Ortega, J. Thermal Anal., 38 (1992) 71.CrossRefGoogle Scholar
  16. 16.
    J. Málek, T. Mitisuhash and J. M. Criado, J. Mater Res., 16 (2001) 1862.CrossRefGoogle Scholar
  17. 17.
    J. Šesták and G. Berggren, Thermochim. Acta, 3 (1971) 1.CrossRefGoogle Scholar
  18. 18.
    R. L. Blaine, DuPont Thermal Application Brief. Du Pont, 1980.Google Scholar
  19. 19.
    J. H. Flynn, J. Wall. NBS A Phys. Ch., 70 (1966) 487.Google Scholar
  20. 20.
    C. D. Doyle, J. Appl. Polym. Sci., 6 (1962) 639.CrossRefGoogle Scholar
  21. 21.
    T. P. Prasad, S. B. Kanungo and H. S. Ray, Thermochim. Acta, 203 (1992) 503S.CrossRefGoogle Scholar
  22. 22.
    J. R. MacCallum and M. V. Munro, Thermochim. Acta, 203 (1992) 457.CrossRefGoogle Scholar
  23. 23.
    M. B. Dantas, Dissertação de Mestrado, Departamento de Química, Universidade Federal da Paraíba 2006, p. 116.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • Evaneide Nascimento Lima
    • 1
  • Marisa Spirandeli Crespi
    • 1
  • C. A. Ribeiro
    • 1
  • Sonia de Almeida
    • 1
  1. 1.Instituto de Química, Departamento de Química AnalíticaUniversidade Estadual PaulistaAraraquaraBrazil

Personalised recommendations