Skip to main content
Log in

Use of emanation thermal analysis to characterize thermal reactivity of brannerite mineral

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Emanation thermal analysis (ETA) was used to characterize the thermal reactivity of amorphous brannerite mineral of general formula U1–xTi2+xO6 (locality El Cabril, near Cordoba, Spain). It was demonstrated that on sample heating up to 880°C microstructure changes taking place in the sample were accompanied by the formation of new radon diffusion paths, followed by their closing up during the final transformation of amorphous to crystalline brannerite in the range 900–1020 °C. Relative changes in structure irregularities that served as radon diffusion paths during heating and subsequent cooling of the sample to temperatures of 300, 550, 750, 880, 1020 and 1130°C, respectively, were determined from the ETA results. Mass losses in temperature ranges of 230–315, 570–760 and 840–1040°C were observed by thermogravimetry. Mass spectrometry indicated the release of CO2 mainly due to the decomposition of minor carbon amount in the brannerite mineral sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RO Ifill WC Cooper AH Clark (1996) CIM Bull. 89 93

    Google Scholar 

  2. JT Szymanski JD Scott (1982) Can. Mineral. 20 271 Occurrence Handle1:CAS:528:DyaL38XltFals7w%3D

    CAS  Google Scholar 

  3. GR Lumpkin SHF Leung M Colella (2000) Mater. Res. Soc. Symp. Proc. 608 359 Occurrence Handle1:CAS:528:DC%2BD3cXnslajtrg%3D

    CAS  Google Scholar 

  4. A. E. Ringwood, S. E. Kesson, K. D. Reeve, D. M. Levins and E. J. Ramm, in: W. Lutze, R. C. Ewing (Eds), Radioactive Waste Forms for the Future, 1988, p. 233.

  5. JE Patchett EW Nuffield (1960) Can. Mineral. 6 483 Occurrence Handle1:CAS:528:DyaF3MXht1emur4%3D

    CAS  Google Scholar 

  6. E. R. Vance, M. W. A. Stewart, R. A. Day, K. P. Hart, M. J. Hambley and A. Brownscombe, ‘Pyrochlore-rich Titanate Ceramics for Incorporation of Plutonium, Uranium and Process Chemicals’, ANSTO report (1997).

  7. ER Vance JN Watson ML Carter RA Day GR Lumpkin KP Hart Y Zhang PJ McGlinn MWA Stewart DJ Cassidy et al. (2000) Environmental Issues and Waste Management Technologies V American Ceramic Society USA 561

    Google Scholar 

  8. Y Zhang GR Lumpkin H Li MG Blackford M Colella ML Carter ER Vance (2006) J. Nucl. Mater. 350 293 Occurrence Handle10.1016/j.jnucmat.2006.01.012 Occurrence Handle1:CAS:528:DC%2BD28Xjslygt7s%3D

    Article  CAS  Google Scholar 

  9. V Balek J Tölgyessy et al. (1984) Emanation thermal analysis and other radiometric emanation methods, in Wilson and Wilson’s Comprehensive Analytical Chemistry, Part XIIC Elsevier Science Publishers Amsterdam 304

    Google Scholar 

  10. V Balek ME Brown et al. (1998) Less common techniques, in: Handbook on Thermal Analysis and Calorimetry, Vol. 1 Chapter 9 Elsevier Science B.V. Amsterdam 445

    Google Scholar 

  11. JF Ziegler JP Biersack U Littmark et al. (1985) The Stopping and Range of Ions in Solids Pergamon Press New York

    Google Scholar 

  12. V Balek M Beneš Z Málek G Matuschek A Kettrup S Yariv (2006) J. Therm. Anal. Cal. 83 617 Occurrence Handle10.1007/s10973-005-7424-y Occurrence Handle1:CAS:528:DC%2BD28Xjt1Kgt78%3D

    Article  CAS  Google Scholar 

  13. NK Labhsetwar V Balek S Rayalu T Terasaka A Yamazaki J Šubrt H Haneda T Mitsuhashi (2005) J. Therm. Anal. Cal. 80 67 Occurrence Handle10.1007/s10973-005-0712-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Balek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balek, V., Vance, E.R., Zeleňák, V. et al. Use of emanation thermal analysis to characterize thermal reactivity of brannerite mineral. J Therm Anal Calorim 88, 93–98 (2007). https://doi.org/10.1007/s10973-006-8094-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-8094-0

Keywords

Navigation