Use of emanation thermal analysis to characterize thermal reactivity of brannerite mineral

  • V. Balek
  • E. R. Vance
  • V. Zeleňák
  • Z. Málek
  • J. Šubrt


Emanation thermal analysis (ETA) was used to characterize the thermal reactivity of amorphous brannerite mineral of general formula U1–xTi2+xO6 (locality El Cabril, near Cordoba, Spain). It was demonstrated that on sample heating up to 880°C microstructure changes taking place in the sample were accompanied by the formation of new radon diffusion paths, followed by their closing up during the final transformation of amorphous to crystalline brannerite in the range 900–1020 °C. Relative changes in structure irregularities that served as radon diffusion paths during heating and subsequent cooling of the sample to temperatures of 300, 550, 750, 880, 1020 and 1130°C, respectively, were determined from the ETA results. Mass losses in temperature ranges of 230–315, 570–760 and 840–1040°C were observed by thermogravimetry. Mass spectrometry indicated the release of CO2 mainly due to the decomposition of minor carbon amount in the brannerite mineral sample.


brannerite emanation thermal analysis MS SEM thermal reactivity thermogravimetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ifill, RO, Cooper, WC, Clark, AH 1996CIM Bull.8993Google Scholar
  2. 2.
    Szymanski, JT, Scott, JD 1982Can. Mineral.20271Google Scholar
  3. 3.
    Lumpkin, GR, Leung, SHF, Colella, M 2000Mater. Res. Soc. Symp. Proc.608359R. W. Smith, D. W. Shoesmith (Eds)Google Scholar
  4. 4.
    A. E. Ringwood, S. E. Kesson, K. D. Reeve, D. M. Levins and E. J. Ramm, in: W. Lutze, R. C. Ewing (Eds), Radioactive Waste Forms for the Future, 1988, p. 233.Google Scholar
  5. 5.
    Patchett, JE, Nuffield, EW 1960Can. Mineral.6483Google Scholar
  6. 6.
    E. R. Vance, M. W. A. Stewart, R. A. Day, K. P. Hart, M. J. Hambley and A. Brownscombe, ‘Pyrochlore-rich Titanate Ceramics for Incorporation of Plutonium, Uranium and Process Chemicals’, ANSTO report (1997).Google Scholar
  7. 7.
    Vance, ER, Watson, JN, Carter, ML, Day, RA, Lumpkin, GR, Hart, KP, Zhang, Y, McGlinn, PJ, Stewart, MWA, Cassidy, DJ,  et al. 2000Environmental Issues and Waste Management Technologies VAmerican Ceramic SocietyUSA561Ed. D. SpearingGoogle Scholar
  8. 8.
    Zhang, Y, Lumpkin, GR, Li, H, Blackford, MG, Colella, M, Carter, ML, Vance, ER 2006J. Nucl. Mater.350293CrossRefGoogle Scholar
  9. 9.
    Balek, V, Tölgyessy, J,  et al. 1984Emanation thermal analysis and other radiometric emanation methods, in Wilson and Wilson’s Comprehensive Analytical Chemistry, Part XIICElsevier Science PublishersAmsterdam304G. Svehla EdGoogle Scholar
  10. 10.
    Balek, V, Brown, ME,  et al. 1998Less common techniques, in: Handbook on Thermal Analysis and Calorimetry, Vol. 1 Chapter 9Elsevier Science B.V.Amsterdam445Edited by M. E. BrownGoogle Scholar
  11. 11.
    Ziegler, JF, Biersack, JP, Littmark, U,  et al. 1985The Stopping and Range of Ions in SolidsPergamon PressNew YorkGoogle Scholar
  12. 12.
    Balek, V, Beneš, M, Málek, Z, Matuschek, G, Kettrup, A, Yariv, S 2006J. Therm. Anal. Cal.83617CrossRefGoogle Scholar
  13. 13.
    Labhsetwar, NK, Balek, V, Rayalu, S, Terasaka, T, Yamazaki, A, Šubrt, J, Haneda, H, Mitsuhashi, T 2005J. Therm. Anal. Cal.8067CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • V. Balek
    • 1
  • E. R. Vance
    • 2
  • V. Zeleňák
    • 1
  • Z. Málek
    • 1
  • J. Šubrt
    • 3
  1. 1.Nuclear Research Institute Řež, plcŘežCzech Republic
  2. 2.Australian Nuclear Science and Technology OrganizationMenai, SydneyAustralia
  3. 3.Institute of Inorganic Chemistry, ASCRŘežCzech Republic

Personalised recommendations