Journal of Thermal Analysis and Calorimetry

, Volume 88, Issue 3, pp 703–707 | Cite as

Applicability of the Kissinger equation in thermal analysis



For the most common kinetic models used in heterogeneous reactions, the dependencies on x m = E/RT m (E is the activation energy, T m is the temperature corresponding to maximum process rate, R is the gas constant) on the relative errors (e%) in the determination of the activation energy from the slope of the Kissinger straight line ln(β / T m 2 ) vs. 1/T m (β is the heating rate) are evaluated. It is pointed out that, for x m≥10.7 and all kinetic models, ∣e%∣≤5%. Some possible cases exhibiting high values of ∣e%∣, which can be higher than 10%, are put in evidence and discussed.


Kissinger equation non-isothermal kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. E. Kissinger, Anal. Chem., 29 (1957) 1702.CrossRefGoogle Scholar
  2. 2.
    Y. Q. Li, L. H. Zhang and H. Gong, J. Therm. Anal. Cal., 79 (2005) 677.CrossRefGoogle Scholar
  3. 3.
    E. Sima-Ella and T. J. Mays, J. Therm. Anal. Cal., 80 (2005) 109.CrossRefGoogle Scholar
  4. 4.
    L. Nunez and M. Villanueva, J. Therm. Anal. Cal., 80 (2005) 141.CrossRefGoogle Scholar
  5. 5.
    E. L. M. Krabbendan-Lattaye, W. P. C. De Klerk and R. E. Krämer, J. Therm. Anal. Cal., 80 (2005) 157.Google Scholar
  6. 6.
    W. P. C. de Klerk, E. L. M. Krabbendan-Lattaye, B. Berger, H. Brechbuhl and C. Popescu, J. Therm. Anal. Cal., 80 (2005) 529.CrossRefGoogle Scholar
  7. 7.
    K. Yokimita, R. C. Oliveira, E. B. Aranjo, J. C. S. Moraes and L. H. Avanci, Thermochim. Acta, 426 (2005) 157.CrossRefGoogle Scholar
  8. 8.
    B. D. Park and X. M. Wang, Thermochim. Acta, 433 (2005) 88.CrossRefGoogle Scholar
  9. 9.
    P. Stolarek and S. Ledakovicz, Thermochim. Acta, 433 (2005) 200.CrossRefGoogle Scholar
  10. 10.
    A. A. Joraid, Thermochim. Acta, 436 (2005) 78.CrossRefGoogle Scholar
  11. 11.
    A. Catalani and M. G. Bonicelli, Thermochim. Acta, 438 (2005) 126.CrossRefGoogle Scholar
  12. 12.
    D. Y. Wang, Y. Z. Wang, J. S. Wang, D. Q. Chen, Q. Zhou, B. Yang and W. Y. Li, Polym. Degrad. Stab., 87 (2005) 171.CrossRefGoogle Scholar
  13. 13.
    M. Erceg, T. Kovačić and I. Klarić, Polym. Degrad. Stab., 90 (2005) 86.CrossRefGoogle Scholar
  14. 14.
    K. Chrissafis, K. M. Paraskevopoulos and B. N. Bikirias, Polym. Degrad. Stab., 91 (2006) 60.CrossRefGoogle Scholar
  15. 15.
    J. P. Elder, J. Thermal Anal., 30 (1985) 657.CrossRefGoogle Scholar
  16. 16.
    F. J. Gotor, M. Marcias, A. Ortega and J. M. Criado, Int. J. Chem. Kinet., 30 (1998) 647.CrossRefGoogle Scholar
  17. 17.
    J. M. Criado and A. Ortega, J. Non-Cryst. Solids, 87 (1986) 302.CrossRefGoogle Scholar
  18. 18.
    J. Málek, J. Šesták, F. Rouquérol, J. M. Criado and A. Ortega, J. Thermal Anal., 38 (1992) 71.CrossRefGoogle Scholar
  19. 19.
    J. Llopiz, M. M. Romero, A. Jerez and Y. Laureiro, Thermochim. Acta, 256 (1995) 205.CrossRefGoogle Scholar
  20. 20.
    X. Gao, D. Chen and D. Dollimore, Thermochim. Acta, 223 (1993) 75.CrossRefGoogle Scholar
  21. 21.
    G. I. Senum and T. T. Yang, J. Thermal Anal., 11 (1977) 446.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  1. 1.INCDIE-ICPE-CA — National Institute for Research and Development in Electrical EngineeringBucharestRomania
  2. 2.Department of Physical ChemistryUniversity of BucharestBucharestRomania

Personalised recommendations