Thermal properties of polyurethanes synthesized using waste polyurethane foam glycolysates



In this work thermal transitions and thermal stability of polyurethane intermediates and polyurethanes were investigated. The intermediates were obtained by glycolysis of waste polyurethane (PUR) in the reaction with hexamethylene glycol (HDO). The excess of HDO was not separated from the product after the glycolysis process was finished. The effects of different mass ratio of HDO to PUR foam on selected physicochemical properties (hydroxyl number, Brookfield viscosity and density) were also determined.

The polyurethanes were synthesized from the obtained intermediates by the prepolymer method using diisocyanate (MDI) and glycolysis product of molecular mass in range 700/1000 g mol–1. Hexamethylene glycol, 1,4-butanediol and ethylene glycol were used as chain extender agents. Influence of NCO groups concentration in prepolymer on glass transition temperature (T g) and storage and loss modulus (E’, E’’) of polyurethanes were investigated by the DMTA method. Thermal decomposition of obtained glycolysates and polyurethanes was followed by thermogravimetry coupled with Fourier transform infrared spectroscopy. Main products of thermal decomposition were identified.


DMTA elastomer glycolysis polyurethane TG TG-FTIR thermal analysis thermal stability waste foam 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Modesti, M, Simioni, F, Munari, R, Baldoin, N 1995React. Funct. Polym.26157CrossRefGoogle Scholar
  2. 2.
    Gerlock, J, Braslaw, J, Zinbo, M 1984Ind. Eng. Chem. Process Dev.23545CrossRefGoogle Scholar
  3. 3.
    Fambri, L, Pegoretti, A, Kolarik, J, Gavazza, C, Penati, A 1998J. Thermal Anal.52789CrossRefGoogle Scholar
  4. 4.
    Herrera, M, Matuschek, G, Kettrup, A 2002Polym. Degrad. Stab.78323CrossRefGoogle Scholar
  5. 5.
    Kulesza, K, Pielichowski, K, German, K 2006J. Anal. Appl. Pyrol.76243CrossRefGoogle Scholar
  6. 6.
    Borda, J, Pasztor, G, Zsuga, M 2000Polym. Degrad. Stab.68419CrossRefGoogle Scholar
  7. 7.
    Nikje, MMA, Haghshenas, M, Garmarudi, AB 2006Polym. Bull.56257CrossRefGoogle Scholar
  8. 8.
    Pappa, A, Mikedi, K, Tzamtis, N, Statheropoulos, MJ 2006J. Therm. Anal. Cal.84655CrossRefGoogle Scholar
  9. 9.
    Modesti, M, Simioni, F 1996Polym. Eng. Sci.362173CrossRefGoogle Scholar
  10. 10.
    Herrera, M, Wilhelm, M, Matuschek, G, Kettrup, A 2001J. Anal. Appl. Pyrol.58–59173CrossRefGoogle Scholar
  11. 11.
    B. Tucker and H. Ulrich, U.S. Pat., 3 983 087 (1976).Google Scholar
  12. 12.
    Kulesza, K, Pielichowski, K, Kowalski, Z 2006J. Therm. Anal. Cal.86475CrossRefGoogle Scholar
  13. 13.
    Braslaw, J, Gerlock, JL 1984Ind. Eng. Chem. Process Dev.23552CrossRefGoogle Scholar
  14. 14.
    Molero, C, Lucas, A, Rodriguez, F 2006Polym. Degrad. Stab.91894CrossRefGoogle Scholar
  15. 15.
    Wu, C-H, Chang, C-Y, Li, J-K 2002Polym. Degrad. Stab.75413CrossRefGoogle Scholar
  16. 16.
    Wu, C-H, Chang, C-Y, Cheng, C-M, Huang, H-C 2003Polym. Degrad. Stab.80103CrossRefGoogle Scholar
  17. 17.
    Borda, J, Racz, A, Zsuga, M 2002J. Adhesion Sci. Technol.161225CrossRefGoogle Scholar
  18. 18.
    Pielichowski, K, Slotwinska, D 2004Thermochim. Acta41079CrossRefGoogle Scholar
  19. 19.
    S. Matkó, P. Anna, G. Marosi, J. Borda and M. Zsuga, Upcycling of polyurethane wastes, Proceeding of the 8th Polymers for Advanced Technologies International Symposium Budapest, Hungary, 13–16 September 2005.Google Scholar
  20. 20.
    Datta, J, Pasternak, S 2005Polimery5352Google Scholar
  21. 21.
    Murai, M, Sanou, M, Fujimoto, T, Baba, F 2003J. Cell. Plast.3915CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Chemical Faculty, Department of Polymer TechnologyGdańsk University of TechnologyGdańskPoland

Personalised recommendations