Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 90, Issue 2, pp 443–447 | Cite as

Pozzolanic reaction of a spent fluid catalytic cracking catalyst in FCC-cement mortars

  • M. García de Lomas
  • M. I. Sánchez de Rojas
  • M. Frías
Regular papers Material Science/Geosciences

Abstract

This work presents the relation between the pozzolanic activity, the hydration heat and the compressive strength developed by blended mortars containing 10 and 35% of a spent fluid catalytic cracking catalyst (FCC).

The results show that, in comparison with 100% Portland cement mortar, a mortar with 10% FCC increases the hydration heat all over the period of testing. This hydration heat increasing is due to the pozzolanic effect, therefore the resulting compressive strength is higher than the reference mortar. Whereas, in a mortar with 35% of FCC, the hydration heat is higher than 100% PC mortar, until 10 h of testing. After this age, the substitution degree predominates over the pozzolanic activity, showing in this case, lower hydration heat and developing lower compressive strength than 100% PC mortar.

Keywords

compressive strength heating hydration heat pozzolanic reaction spent fluid cracking catalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. I. Sánchez de Rojas and M. Frías, Cem. Concr. Res., 26 (1996) 203.CrossRefGoogle Scholar
  2. 2.
    V. Rahhal, O. Cabrera, R. Talero and A. Delgado, J. Therm. Anal. Cal., OnlineFirst (2006).Google Scholar
  3. 3.
    M. I. Sánchez de Rojas and M. Frías, ’The influence of silica fume on the heat of hydration of Portland cement’, Fifth CANMET/ACI Intern. Conf. on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Milwaukee, WI, 2 (1995) 829.Google Scholar
  4. 4.
    M. I. Sánchez de Rojas, M. P. Luxán, M. Frías and N. García, Cem. Concr. Res., 23 (1993) 46.CrossRefGoogle Scholar
  5. 5.
    R. Alegre, La calorimétrie des ciments au CERRIL, Revue des Matériaux, 548 (1961) 247.Google Scholar
  6. 6.
    UNE-EN 196-9 Standard: ‘Methods of testing cement. Part 9: Heat of hydration — Semi-Adiabatic Method, 2005.Google Scholar
  7. 7.
    M. Kaloumenou, E. Badogiannis, S. Tsivilis and G. Kakali, J. Therm. Anal. Cal., 56 (1999) 901.CrossRefGoogle Scholar
  8. 8.
    M. A. Caldarone and K. A. Gruber, ’High reactivity metakaolín (HRM) for high performances concrete’, Fifth CANMET/ACI Intern. Conf. on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Milwaukee, WI, 2 (1995) 815.Google Scholar
  9. 9.
    J. Ambroise, M. Murat and J. Pera, Sil. Ind., 7 (1996) 99.Google Scholar
  10. 10.
    S. Wild, J. M. Khatib and A. Jones, Cem. Concr. Res., 26 (1996) 1537.CrossRefGoogle Scholar
  11. 11.
    M. Murat, Cem. Concr. Res., 13 (1983) 259.CrossRefGoogle Scholar
  12. 12.
    M. Frías, M. I. Sánchez de Rojas and J. Cabrera, Cem. Concr. Res., 30 (2000) 209.CrossRefGoogle Scholar
  13. 13.
    J. Payá, J. Monzó, M. V. Borrachero, S. Velázquez and M. Bonilla, Cem. Concr. Res., 33 (2003) 1085.CrossRefGoogle Scholar
  14. 14.
    J. Payá, J. Monzó and M. V. Borrachero, Cem. Concr. Res., 29 (1999) 1773.CrossRefGoogle Scholar
  15. 15.
    J. Payá, J. Monzó, M. V. Borrachero and S. Velázquez, Cem. Concr. Res., 33 (2003) 603.CrossRefGoogle Scholar
  16. 16.
    J. Payá, J. Monzó and M. V. Borrachero, Cem. Concr. Res., 31 (2001) 57.CrossRefGoogle Scholar
  17. 17.
    J. Payá, J. Monzó, M. V. Borrachero, F. Amahjour, I. Girbés, S. Velázquez and L. M. Ordóñez, J. Chem. Technol. Biotechnol., 77 (2002) 331.CrossRefGoogle Scholar
  18. 18.
    B. Pacewska, M. Bukowska, I. Wilinska and M. Swat, Cem. Concr. Res., 32 (2002) 145.CrossRefGoogle Scholar
  19. 19.
    N. Su, F. Hung-Yuan, Ch. Zong-Huei and L. Fu. Shung, Cem. Conc. Res., 30 (2000) 1773.CrossRefGoogle Scholar
  20. 20.
    B. Pacewska, I. Wilinska and M. Bukowska, J. Therm. Anal. Cal., 60 (2000) 71.CrossRefGoogle Scholar
  21. 21.
    B. Pacewska, M. Bukowska and I. Wilinska, J. Therm. Anal. Cal., 74 (2003) 931.CrossRefGoogle Scholar
  22. 22.
    J. Payá, M. V. Borrachero, J. Monzó, L. Soriano and S. Velásquez, ’Cementos portland adicionados con puzolanas silicoaluminosas: Evaluación del calor de hidratación’, In VIII Congreso Nacional de Materiales, Universidad Politécnica de Valencia, SEMAT, Valencia, (2004) 37.Google Scholar
  23. 23.
    UNE-EN 197-1 Standard: ‘Cements. Part 1: Conpositions, specifications and conformity criteria for common cements, 2000.Google Scholar
  24. 24.
    UNE-EN 196-1 Standard: ‘Methods of testing cement. Part 1: Determination of strength’, 1996.Google Scholar
  25. 25.
    Lea’s, Chemistry of Cement and Concrete, Arnold Publishers, London 1998, p. 514.Google Scholar
  26. 26.
    K. Takemoto and H. Uchicawa, Hydration des ciments pauzzolaniques. 7th Intern Congress on the Chemistry of Cement, I:IV-2/1-21. Paris (1980).Google Scholar
  27. 27.
    S. Wild, J. M. Khatib and A. Jones, Cem. Concr. Res., 26 (1996) 1537.CrossRefGoogle Scholar
  28. 28.
    S. Wild, B. B. Sabir and J. M. Khatib, Cem. Concr. Res., 25 (1996) 1567.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • M. García de Lomas
    • 1
  • M. I. Sánchez de Rojas
    • 1
  • M. Frías
    • 1
  1. 1.Eduardo Torroja Institude (CSIC)MadridSpain

Personalised recommendations