Journal of Thermal Analysis and Calorimetry

, Volume 86, Issue 3, pp 707–712 | Cite as

Thermal and mechanical characterization of plasticized poly (L-lactide-co-D,L-lactide) films for food packaging

  • Veronica P. Martino
  • Roxana A. Ruseckaite
  • A. Jiménez


In this work amorphous poly(L-lactide-co-D,L-lactide) (PLLA/PDLLA) was blended with four different commercial adipates to obtain films with enhanced mechanical and thermal properties. Efficiency of plasticizers was evaluated by studying their compatibility with the polymer and their effect on its glass transition temperature. All plasticizers were compatible with the matrix up to a critical composition depending on its molar mass. The addition of plasticizers caused a decrease in elastic modulus and tensile stress, meanwhile elongation at break had a maximum increase for polyadipates with the lower molar mass. Monomeric adipate showed some migration at concentration higher than 10 mass%, while the addition of the higher molar mass plasticizer lead to eventual phase separation. Polyadipates with low molar mass showed a promising behaviour to overcome the brittleness in PLLA/PDLLA films.


additives mechanical properties plasticizer polyester poly(L-lactide-co-D,L-lactide) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Corti, A, Vallini, G, Perea, A, Cioni, F, Solaro, R, Chielini, E,  et al. 1992Composting Microbial Eco-systems for Testing the Biodegradability of starch-filled polyethylene films, in Biodegradable Polymers and PlasticsRSC, Redwood Press Ltd.Melksham, WiltshireM. Vert, J. Feijen, A. Albertsson, G. Scott, E. Chiellini (Eds.)Google Scholar
  2. 2.
    Auras, R, Harte, B, Selke, S 2004Macromol. Biosci.4835CrossRefGoogle Scholar
  3. 3.
    Tharanathan, R 2003Trends in Food Science & Technology1471CrossRefGoogle Scholar
  4. 4.
    Fang, JM, Fowler, PA, Escrig, C, González, R, Costa, JA, Chamudis, L 2005Carbohydr. Polym.6039CrossRefGoogle Scholar
  5. 5.
    Martin, O, Avérous, L 2001Polymer426209CrossRefGoogle Scholar
  6. 6.
    Kulinski, Z, Piorkowska, E 2005Polymer4510290CrossRefGoogle Scholar
  7. 7.
    Ljungberg, N, Wesslén, B 2003Polymer447679CrossRefGoogle Scholar
  8. 8.
    Balafas, D, Shaw, KJ, Whitfield, FB 1999Food Chem.65279CrossRefGoogle Scholar
  9. 9.
    Ljungberg, N, Wesslén, B 2005Biomacromolecules61789CrossRefGoogle Scholar
  10. 10.
    Ljungberg, N, Wesslén, B 2002J. Appl. Polym. Sci.861227CrossRefGoogle Scholar
  11. 11.
    Wang, Y, Mano, JF 2005J. Therm. Anal. Cal.80171CrossRefGoogle Scholar
  12. 12.
    Sothornvit, R, Kotcha, JM 2001J. Food Eng.50149CrossRefGoogle Scholar
  13. 13.
    Rosen, S,  et al. 1982Fundamental Principles of Polymeric MaterialsWileyUSAGoogle Scholar
  14. 14.
    Krevelen, V,  et al. 1990Properties of polymers, 3rd ednElsevierThe NetherlandsGoogle Scholar
  15. 15.
    Barton, AFM,  et al. 1985Handbook of Solubility Parameters and other cohesive ParametersCRC PressBoca Raton, Fl142Google Scholar
  16. 16.
    Malmgren, T, Mays, J, Pyda, M 2006J. Therm. Anal. Cal.8335CrossRefGoogle Scholar
  17. 17.
    Drumond, WS, Mothé, CG, Wang, SH 2006J. Therm. Anal. Cal.85173CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Veronica P. Martino
    • 1
  • Roxana A. Ruseckaite
    • 2
  • A. Jiménez
    • 1
  1. 1.Analytical Chemistry, Nutrition and Food Science DepartmentUniversity of AlicanteAlicanteSpain
  2. 2.INTEMA – University of Mar del PlataMar del PlataArgentina

Personalised recommendations