Journal of Thermal Analysis and Calorimetry

, Volume 90, Issue 3, pp 747–753 | Cite as

Dehydroxylation kinetic and exfoliation of large muscovite flakes

  • F. Gridi-Bennadji
  • P. Blanchart


The thermal transformations of muscovite flakes are a key point in many applications because besides dehydroxylation a significant exfoliation process occurs. Dehydroxylation kinetic is experimented by isothermal TG analyses in the 700–850°C temperature range and described with the Avrami theory. Hydroxyl condensation predominates at the onset of the process, but water diffusion is the most important process when the transformed fraction is high. The progressive transition between the two transformation stages contrast with the more accentuated transition for a ground muscovite. The activation energy varies weakly (190–214 kJ mol−1) in the whole transformation process that supports the co-existence of hydroxyl condensation and diffusion phenomena. Dehydroxylation kinetic increases strongly with temperature and decreases with the reaction advancement. Exfoliation is correlated with dehydroxylation kinetic and occurs in a narrow transformation and temperature ranges. An in-situ combination process of hydroxyls occurs and water vapor favors the layer expansion.


dehydroxylation exfoliation flakes muscovite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. L. Lapides, J. Thermal Anal., 42 (1994) 197.CrossRefGoogle Scholar
  2. 2.
    B. V. L’vov and V. L. Ugolkov, J. Therm. Anal. Cal., 82 (2005) 15.CrossRefGoogle Scholar
  3. 3.
    J. Liang and F. C. Hawthorne, Can. Mineral., 34 (1996) 115.Google Scholar
  4. 4.
    S. Guggenheim, Y. Chang and A. H. Foster van Gross, Am. Miner., 72 (1987) 537.Google Scholar
  5. 5.
    S. Udagawa, K. Urabe and H. Hasu, Jpn. Assoc. Mineral., Petrol. Econ. Geol., 69 (1974) 381.Google Scholar
  6. 6.
    C. Rodriguez-Navarro, G. Cultrone, A. Sanchez-Navas and E. Sebastian, Am. Miner., 88 (2003) 713.Google Scholar
  7. 7.
    K. J. D. Mackenzie, I. W. M. Brown, C. M. Cardile and R. H. Meinhold, J. Matter Sci., 22 (1987) 2645.CrossRefGoogle Scholar
  8. 8.
    G. Lecomte and P. Blanchart, J. Mater Sci., 41 (2006) 4937.CrossRefGoogle Scholar
  9. 9.
    R. W. Lawson, Vacuum, 12 (1962) 145.CrossRefGoogle Scholar
  10. 10.
    S. G. Barlow and D. A. C. Manning, Br. Ceram. Trans., 98 (1999) 122.CrossRefGoogle Scholar
  11. 11.
    J. P. Eberhart, Bull. Soc. Fr. Miner. Crist., 86 (1963) 213.Google Scholar
  12. 12.
    H. H. Klein, W. B. Stern and W. Weber, Schweiz. Miner. Petrogr. Mitt., 62 (1982) 145.Google Scholar
  13. 13.
    V. Hanykyr, J. Ederova and J. Srank, Thermochim. Acta, 93 (1985) 633.CrossRefGoogle Scholar
  14. 14.
    K. J. D. Mackenzie, I. W. M. Brown, C. M. Cardile and R. H. Meinhold, J. Mater Sci., 22 (1987) 2645.CrossRefGoogle Scholar
  15. 15.
    J. L. Pérez-Rodríguez, J. Pascual, F. Franco, M. C. Jiménez de Haro, A. Duran, V. Ramírez del Valle and L. A. Pérez-Maqueda, J. Eur. Ceram. Soc., 26 (2006) 747.CrossRefGoogle Scholar
  16. 16.
    G. L. Jr. Gianes and W. Vedder, Nature, 201 (1964) 495.CrossRefGoogle Scholar
  17. 17.
    J. Kristóf, I. Vassanyi, E. Nemecz and J. Inczédy, Thermochim. Acta, 93 (1985) 625.CrossRefGoogle Scholar
  18. 18.
    I. Vassanyi and A. Szabó, Mater. Sci. Forum, 133–136 (1993) 655.Google Scholar
  19. 19.
    E. Mazzucato, G. Artioli and A. Gualtieri, Mater. Sci. Forum, 278–281 (1998) 424.CrossRefGoogle Scholar
  20. 20.
    L. Filopovic-Petrovic, Lj. Kostic-Gvozdenovic, S. Eric-Antonic and S. Despotovic, Interceram, 48 (1999) 42.Google Scholar
  21. 21.
    I. L. Lapides, J. Thermal Anal., 50 (1997) 269.CrossRefGoogle Scholar
  22. 22.
    H. H. Klein, W. B. Stern and W. Weber, Schweiz. Miner. Petrogr. Mitter., 62 (1982) 145.Google Scholar
  23. 23.
    E. Brown, Handbook of Thermal Analysis and Calorimetry, Elsevier, Amsterdam 1998.Google Scholar
  24. 24.
    H. Kodama and J. E. Brydon, Trans. Faraday Soc., 64 (1968) 3112.CrossRefGoogle Scholar
  25. 25.
    E. Mazzucato, G. Artioli and A. Gualtieri, Phys. Chem. Miner., 26 (1999) 375.CrossRefGoogle Scholar
  26. 26.
    E. A. Kalinichenko and A. S. Litovchenko, Phys. Chem. Miner., 24 (1997) 520.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  1. 1.GEMHEcole Nationale Supérieure de Céramique IndustrielleLimogesFrance

Personalised recommendations