Skip to main content
Log in

Thermal analysis of tributylammonium montmorillonite and laponite

  • regular
  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Montmorillonite and Laponite loaded with different amounts of tributylammonium cations (TBAH+), up to 40 and 30 mmol, respectively, per 100 g clay, were studied by thermo-XRD-analysis. TBAH-smectites heated at 300 and 420°C exhibited basal spacings of 1.30 and 1.24 nm, attributed to smectite tactoids with low- and high-temperature-stable monolayer charcoals, respectively in the interlayers. DTA-EGA and TG of the TBAH-smectites showed four stages of mass loss labeled A, B, C and D. Stage A below 250°C, accompanied by an endothermic DTA peak, resulted from the dehydration of the clay. Mass loss stages B, C and D, at 250–380, 380–605°C and above 605°C, respectively, accompanied by exothermic DTA peaks, were due to three oxidation steps of the organic matter. In mass loss stage B (first oxidation step) mainly organic hydrogen was oxidized to H2O whereas carbon and nitrogen formed low- and high-temperature-stable charcoals. In stages C and D (second and third oxidation steps) low- and high-temperature- stable charcoals were oxidized, respectively. Dehydroxylation of the smectites occurred together with the second and third oxidation steps. Thermal mass loss at each step was calculated from the TG curves showing that in montmorillonite the percentage of high-temperature-stable charcoal from total charcoal decreased with higher TBAH+ loadings of the clay whereas in Laponite this percentage increased with higher loadings of the clay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. H. Murray, in ‘Proc. 11th Intern. Clay Conference Ottawa, 1997’ (H. Kodama, A. R. Mermut and J. Kenneth Torrance, Eds). 1999, p. 3.

  2. TJ Pinnavaia GW Beall et al. (2000) Polymer-clay nanocomposites John Wiley and Sons Ltd Chichester

    Google Scholar 

  3. S Yariv et al. (2002) Organo-Clay Complexes and Interactions Marcel Dekker New York

    Google Scholar 

  4. RF Giese CJ van Oss et al. (2002) Organo-Clay Complexes and Interactions Marcel Dekker New York 175

    Google Scholar 

  5. S Yariv et al. (2002) Organo-Clay Complexes and Interactions Marcel Dekker New York 39

    Google Scholar 

  6. JW Gilman DH Awad RD Davis JR Shields T Kashiwagi DL VanderHart RH Harris CH Davis AB Morgan TE Sutto JH Callahan PC Trulove HC De Long (2001) Chem. Mater. 14 3776 Occurrence Handle10.1021/cm011532x Occurrence Handle1:CAS:528:DC%2BD38XmtFSrs78%3D

    Article  CAS  Google Scholar 

  7. W Xie Z Gao K Liu W-P Pan R Vaia D Hunter A Singh (2001) Thermochim. Acta 367 339 Occurrence Handle10.1016/S0040-6031(00)00690-0

    Article  Google Scholar 

  8. RD Davis JW Gilman T Sutto JH Callahan PC Trulove H De Long (2004) Clays Clay Miner. 52 171 Occurrence Handle10.1346/CCMN.2004.0520203 Occurrence Handle1:CAS:528:DC%2BD2cXjtlOnsbs%3D

    Article  CAS  Google Scholar 

  9. A Langier-Kuzniarowa et al. (2002) Organo-Clay Complexes and Interactions Marcel Dekker New York 273

    Google Scholar 

  10. S Yariv et al. (2003) Natural and Laboratory Simulated Thermal Geochemical Processes Kluwer Academic Publishers Dordrecht 253

    Google Scholar 

  11. S Yariv et al. (1963) Organo-metallic-clay complexes. Ph.D. thesis submitted to the Senate of the Hebrew University of Jerusalem Hebrew University of Jerusalem Jerusalem 116

    Google Scholar 

  12. S Yariv D Ovadyahu A Nasser U Shuali N Lahav (1992) Thermochim. Acta 207 103 Occurrence Handle10.1016/0040-6031(92)80128-J Occurrence Handle1:CAS:528:DyaK38XmsF2nsrY%3D

    Article  CAS  Google Scholar 

  13. S Yariv et al. (1992) Modern Approach to Wettability; Theory and Applications Plenum Press New York 279

    Google Scholar 

  14. S Yariv (1992) Int. Rev. Phys. Chem. 11 345 Occurrence Handle1:CAS:528:DyaK3sXhsFWjtbw%3D Occurrence Handle10.1080/01442359209353275

    Article  CAS  Google Scholar 

  15. S Yariv (2004) Appl. Clay Sci. 24 225 Occurrence Handle10.1016/j.clay.2003.04.002 Occurrence Handle1:CAS:528:DC%2BD2cXmtlKlsQ%3D%3D

    Article  CAS  Google Scholar 

  16. N Sonobe T Kyotani Y Hishiyama M Shiraishi A Tomita (1988) J. Phys. Chem. 92 7029 Occurrence Handle10.1021/j100335a037 Occurrence Handle1:CAS:528:DyaL1cXmsVWitbY%3D

    Article  CAS  Google Scholar 

  17. N Sonobe T Kyotani A Tomita (1988) Carbon 26 573 Occurrence Handle10.1016/0008-6223(88)90158-3 Occurrence Handle1:CAS:528:DyaL1cXlsVWgt70%3D

    Article  CAS  Google Scholar 

  18. N Sonobe T Kyotani A Tomita (1990) Carbon 28 483 Occurrence Handle10.1016/0008-6223(90)90042-W Occurrence Handle1:CAS:528:DyaK3cXks1aiurk%3D

    Article  CAS  Google Scholar 

  19. N Sonobe T Kyotani A Tomita (1991) Carbon 29 61 Occurrence Handle10.1016/0008-6223(91)90095-Z Occurrence Handle1:CAS:528:DyaK3MXivVynsA%3D%3D

    Article  CAS  Google Scholar 

  20. Z Yermiyahu I Lapides S Yariv (2002) J. Therm. Anal. Cal. 69 317 Occurrence Handle10.1023/A:1019922714798 Occurrence Handle1:CAS:528:DC%2BD38Xms1elurw%3D

    Article  CAS  Google Scholar 

  21. Z Yermiyahu I Lapides S Yariv (2005) Appl. Clay Sci. 30 33 Occurrence Handle10.1016/j.clay.2005.03.002 Occurrence Handle1:CAS:528:DC%2BD2MXmsVCmsLc%3D

    Article  CAS  Google Scholar 

  22. M Epstein I Lapides S Yariv (2005) J. Therm. Anal. Cal. 82 585 Occurrence Handle10.1007/s10973-005-0938-5 Occurrence Handle1:CAS:528:DC%2BD28XjsFCktA%3D%3D

    Article  CAS  Google Scholar 

  23. Z Yermiyahu A Landau A Zaban I Lapides S Yariv (2003) J. Therm. Anal. Cal. 72 431 Occurrence Handle10.1023/A:1024596726087 Occurrence Handle1:CAS:528:DC%2BD3sXltVWiu7c%3D

    Article  CAS  Google Scholar 

  24. S Yariv (1990) J. Thermal Anal. 36 1953 Occurrence Handle10.1007/BF01914111 Occurrence Handle1:CAS:528:DyaK3MXisFSrsrg%3D

    Article  CAS  Google Scholar 

  25. ACD Newman G Brown et al. (1987) Chemistry and composition of clays of clay minerals, Mineralogical Society Monograph, No. 6 Longman Scientific and Technical London 1

    Google Scholar 

  26. BS Neumann KG Sansom (1970) Israel J. Chem. 8 315 Occurrence Handle1:CAS:528:DyaE3cXltVagtL0%3D

    CAS  Google Scholar 

  27. VC Farmer MM Mortland (1965) J. Phys. Chem. 69 683 Occurrence Handle1:CAS:528:DyaF2MXktFCrtLo%3D

    CAS  Google Scholar 

  28. S Yariv L Heller Y Deutsch W Bodenheimer et al. (1972) Thermal Analysis. Proceedings of 3rd ICTA Congress, Davos, 1971 Birkhauser Verlag Basel Vol. 3, p. 663

    Google Scholar 

  29. S Yariv L Heller-Kallai (1975) Clay Miner. 10 479 Occurrence Handle1:CAS:528:DyaE28XhvVGgt7k%3D

    CAS  Google Scholar 

  30. P Cloos RD Laura (1972) Clays Clay Miner. 20 259 Occurrence Handle10.1346/CCMN.1972.0200503 Occurrence Handle1:CAS:528:DyaE38Xls12isLY%3D

    Article  CAS  Google Scholar 

  31. M Mueller-Vonmoos G Kahr A Rub (1977) Thermochim. Acta 20 387 Occurrence Handle10.1016/0040-6031(77)85093-4 Occurrence Handle1:CAS:528:DyaE1cXltlWnsA%3D%3D

    Article  CAS  Google Scholar 

  32. DMC MacEwan et al. (1951) X-ray Identification and Crystal Structures of Clay Minerals The Mineralogical Society London 86

    Google Scholar 

  33. S Yariv I Lapides (2005) J. Therm. Anal. Cal. 80 11 Occurrence Handle10.1007/s10973-005-0608-7 Occurrence Handle1:CAS:528:DC%2BD2MXktl2ksb8%3D

    Article  CAS  Google Scholar 

  34. Z Malek V Balek D Garfinkel-Shweky S Yariv (1997) J. Therm. Anal. Cal. 48 83 Occurrence Handle1:CAS:528:DyaK2sXhtlWhsrs%3D

    CAS  Google Scholar 

  35. S Yariv M Mueller-Vonmoos G Kahr A Rub (1989) J. Thermal Anal. 35 1941 Occurrence Handle10.1007/BF01911677 Occurrence Handle1:CAS:528:DyaK3cXlvFykur4%3D

    Article  CAS  Google Scholar 

  36. RM Barrer (1989) Clays Clay Miner. 37 385 Occurrence Handle10.1346/CCMN.1989.0370501 Occurrence Handle1:CAS:528:DyaL1MXmtF2rtro%3D

    Article  CAS  Google Scholar 

  37. L Heller-Kallai S Yariv (1981) J. Colloid Interface Sci. 79 479 Occurrence Handle10.1016/0021-9797(81)90099-0 Occurrence Handle1:CAS:528:DyaL3MXhtVKlu7o%3D

    Article  CAS  Google Scholar 

  38. S Yariv L Heller-Kallai (1973) Clays Clay Miner. 21 199 Occurrence Handle10.1346/CCMN.1973.0210309 Occurrence Handle1:CAS:528:DyaE3sXkvFCksr0%3D

    Article  CAS  Google Scholar 

  39. WF Bradley RE Grim (1948) J. Phys. Chem. 52 1404 Occurrence Handle10.1021/j150464a012 Occurrence Handle1:CAS:528:DyaH1MXhsVCquw%3D%3D

    Article  CAS  Google Scholar 

  40. WH Allaway (1949) Soil Sci. Soc. Amer. Proc. 13 183 Occurrence Handle1:CAS:528:DyaG3cXitFShsw%3D%3D Occurrence Handle10.2136/sssaj1949.036159950013000C0032x

    Article  CAS  Google Scholar 

  41. W Bodenheimer L Heller S Yariv (1966) Clay Miner. 6 167 Occurrence Handle10.1180/claymin.1966.006.3.04 Occurrence Handle1:CAS:528:DyaF2sXksFKjtbc%3D

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yariv.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovadyahu, D., Lapides, I. & Yariv, S. Thermal analysis of tributylammonium montmorillonite and laponite. J Therm Anal Calorim 87, 125–134 (2007). https://doi.org/10.1007/s10973-006-7831-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-006-7831-8

Keywords

Navigation