Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 87, Issue 1, pp 125–134 | Cite as

Thermal analysis of tributylammonium montmorillonite and laponite

  • D. Ovadyahu
  • I. Lapides
  • S. Yariv
regular

Abstract

Montmorillonite and Laponite loaded with different amounts of tributylammonium cations (TBAH+), up to 40 and 30 mmol, respectively, per 100 g clay, were studied by thermo-XRD-analysis. TBAH-smectites heated at 300 and 420°C exhibited basal spacings of 1.30 and 1.24 nm, attributed to smectite tactoids with low- and high-temperature-stable monolayer charcoals, respectively in the interlayers. DTA-EGA and TG of the TBAH-smectites showed four stages of mass loss labeled A, B, C and D. Stage A below 250°C, accompanied by an endothermic DTA peak, resulted from the dehydration of the clay. Mass loss stages B, C and D, at 250–380, 380–605°C and above 605°C, respectively, accompanied by exothermic DTA peaks, were due to three oxidation steps of the organic matter. In mass loss stage B (first oxidation step) mainly organic hydrogen was oxidized to H2O whereas carbon and nitrogen formed low- and high-temperature-stable charcoals. In stages C and D (second and third oxidation steps) low- and high-temperature- stable charcoals were oxidized, respectively. Dehydroxylation of the smectites occurred together with the second and third oxidation steps. Thermal mass loss at each step was calculated from the TG curves showing that in montmorillonite the percentage of high-temperature-stable charcoal from total charcoal decreased with higher TBAH+ loadings of the clay whereas in Laponite this percentage increased with higher loadings of the clay.

Keywords

charcoal-smectite complexes DTA EGA Laponite montmorillonite organo-smectites TG tributylammonium smectites XRD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. H. Murray, in ‘Proc. 11th Intern. Clay Conference Ottawa, 1997’ (H. Kodama, A. R. Mermut and J. Kenneth Torrance, Eds). 1999, p. 3.Google Scholar
  2. 2.
    Pinnavaia, TJ, Beall, GW,  et al. 2000Polymer-clay nanocompositesJohn Wiley and Sons LtdChichesterGoogle Scholar
  3. 3.
    Yariv, S,  et al. 2002Organo-Clay Complexes and InteractionsMarcel DekkerNew Yorkp. 345. S. Yariv and HGoogle Scholar
  4. 4.
    Giese, RF, van Oss, CJ,  et al. 2002Organo-Clay Complexes and InteractionsMarcel DekkerNew York175S. Yariv and H. Cross, EdsGoogle Scholar
  5. 5.
    Yariv, S,  et al. 2002Organo-Clay Complexes and InteractionsMarcel DekkerNew York39S. Yariv and H. Cross, EdsGoogle Scholar
  6. 6.
    Gilman, JW, Awad, DH, Davis, RD, Shields, JR, Kashiwagi, T, VanderHart, DL, Harris, RH, Davis, CH, Morgan, AB, Sutto, TE, Callahan, JH, Trulove, PC, De Long, HC 2001Chem. Mater.143776CrossRefGoogle Scholar
  7. 7.
    Xie, W, Gao, Z, Liu, K, Pan, W-P, Vaia, R, Hunter, D, Singh, A 2001Thermochim. Acta367339CrossRefGoogle Scholar
  8. 8.
    Davis, RD, Gilman, JW, Sutto, T, Callahan, JH, Trulove, PC, De Long, H 2004Clays Clay Miner.52171CrossRefGoogle Scholar
  9. 9.
    Langier-Kuzniarowa, A,  et al. 2002Organo-Clay Complexes and InteractionsMarcel DekkerNew York273S. Yariv and H. Cross, EdsGoogle Scholar
  10. 10.
    Yariv, S,  et al. 2003Natural and Laboratory Simulated Thermal Geochemical ProcessesKluwer Academic PublishersDordrecht253R. Ikan, EdGoogle Scholar
  11. 11.
    Yariv, S,  et al. 1963Organo-metallic-clay complexes. Ph.D. thesis submitted to the Senate of the Hebrew University of JerusalemHebrew University of JerusalemJerusalem116Google Scholar
  12. 12.
    Yariv, S, Ovadyahu, D, Nasser, A, Shuali, U, Lahav, N 1992Thermochim. Acta207103CrossRefGoogle Scholar
  13. 13.
    Yariv, S,  et al. 1992Modern Approach to Wettability; Theory and ApplicationsPlenum PressNew York279M. A. Schrader and G. Loeb, EdsGoogle Scholar
  14. 14.
    Yariv, S 1992Int. Rev. Phys. Chem.11345CrossRefGoogle Scholar
  15. 15.
    Yariv, S 2004Appl. Clay Sci.24225CrossRefGoogle Scholar
  16. 16.
    Sonobe, N, Kyotani, T, Hishiyama, Y, Shiraishi, M, Tomita, A 1988J. Phys. Chem.927029CrossRefGoogle Scholar
  17. 17.
    Sonobe, N, Kyotani, T, Tomita, A 1988Carbon26573CrossRefGoogle Scholar
  18. 18.
    Sonobe, N, Kyotani, T, Tomita, A 1990Carbon28483CrossRefGoogle Scholar
  19. 19.
    Sonobe, N, Kyotani, T, Tomita, A 1991Carbon2961CrossRefGoogle Scholar
  20. 20.
    Yermiyahu, Z, Lapides, I, Yariv, S 2002J. Therm. Anal. Cal.69317CrossRefGoogle Scholar
  21. 21.
    Yermiyahu, Z, Lapides, I, Yariv, S 2005Appl. Clay Sci.3033CrossRefGoogle Scholar
  22. 22.
    Epstein, M, Lapides, I, Yariv, S 2005J. Therm. Anal. Cal.82585CrossRefGoogle Scholar
  23. 23.
    Yermiyahu, Z, Landau, A, Zaban, A, Lapides, I, Yariv, S 2003J. Therm. Anal. Cal.72431CrossRefGoogle Scholar
  24. 24.
    Yariv, S 1990J. Thermal Anal.361953CrossRefGoogle Scholar
  25. 25.
    Newman, ACD, Brown, G,  et al. 1987Chemistry and composition of clays of clay minerals, Mineralogical Society Monograph, No. 6Longman Scientific and TechnicalLondon1A. C. D. Newman, EdGoogle Scholar
  26. 26.
    Neumann, BS, Sansom, KG 1970Israel J. Chem.8315Google Scholar
  27. 27.
    Farmer, VC, Mortland, MM 1965J. Phys. Chem.69683Google Scholar
  28. 28.
    Yariv, S, Heller, L, Deutsch, Y, Bodenheimer, W,  et al. 1972Thermal Analysis. Proceedings of 3rd ICTA Congress, Davos, 1971Birkhauser VerlagBaselVol. 3, p. 663H. G. Wiedemann, EdGoogle Scholar
  29. 29.
    Yariv, S, Heller-Kallai, L 1975Clay Miner.10479Google Scholar
  30. 30.
    Cloos, P, Laura, RD 1972Clays Clay Miner.20259CrossRefGoogle Scholar
  31. 31.
    Mueller-Vonmoos, M, Kahr, G, Rub, A 1977Thermochim. Acta20387CrossRefGoogle Scholar
  32. 32.
    MacEwan, DMC,  et al. 1951X-ray Identification and Crystal Structures of Clay MineralsThe Mineralogical SocietyLondon86 G. W. Brindley, EdGoogle Scholar
  33. 33.
    Yariv, S, Lapides, I 2005J. Therm. Anal. Cal.8011CrossRefGoogle Scholar
  34. 34.
    Malek, Z, Balek, V, Garfinkel-Shweky, D, Yariv, S 1997J. Therm. Anal. Cal.4883Google Scholar
  35. 35.
    Yariv, S, Mueller-Vonmoos, M, Kahr, G, Rub, A 1989J. Thermal Anal.351941CrossRefGoogle Scholar
  36. 36.
    Barrer, RM 1989Clays Clay Miner.37385CrossRefGoogle Scholar
  37. 37.
    Heller-Kallai, L, Yariv, S 1981J. Colloid Interface Sci.79479CrossRefGoogle Scholar
  38. 38.
    Yariv, S, Heller-Kallai, L 1973Clays Clay Miner.21199CrossRefGoogle Scholar
  39. 39.
    Bradley, WF, Grim, RE 1948J. Phys. Chem.521404CrossRefGoogle Scholar
  40. 40.
    Allaway, WH 1949Soil Sci. Soc. Amer. Proc.13183CrossRefGoogle Scholar
  41. 41.
    Bodenheimer, W, Heller, L, Yariv, S 1966Clay Miner.6167CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.The Department of Inorganic and Analytical ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations