Journal of Thermal Analysis and Calorimetry

, Volume 86, Issue 3, pp 601–604 | Cite as

Synthesis and characterization of a novel non-linear optical (NLO) material

Endo anthracene maleic anhydride – Diel’s–Alder adduct of anthracene
  • G. Madhurambal
  • P. Ramasamy
  • P. A. Srinivasan
  • S. C. Mojumdar


Anthracene is one of the organic molecular crystals, which exhibits peculiar optical and electronic properties. Since the 9, 10 positions are very reactive in anthracene, it undergoes the Diel’s–Alder reaction with maleic anhydride in 99% yield. The synthesis of Diel’s–Alder adduct has been carried out by adopting standard procedure. The product was subjected to various characterization studies such as FTIR, UV and 1H NMR spectroscopy, and thermal studies to check its purity and determine the applicability of adduct in various applications. The second harmonic generation (SHG) efficiency of the adduct has been observed using Nd:YAG laser.


anthracene characterization studies Diel’s–Alder adduct SHG efficiency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matsuyama, H, Young, JF 1999J. Mater. Res.1416Google Scholar
  2. 2.
    Mojumdar, SC, Raki, L 2005J. Therm. Anal. Cal.8289CrossRefGoogle Scholar
  3. 3.
    Matsuyama, H, Young, JF 1999Chem. Mater.113389CrossRefGoogle Scholar
  4. 4.
    S. C. Mojumdar and L. Raki, J. Therm. Anal. Cal., in press.Google Scholar
  5. 5.
    Giannelis, EP 1996Adv. Mater.829CrossRefGoogle Scholar
  6. 6.
    Alexandre, M, Dubois, P 2000Mater. Sci. Eng.281CrossRefGoogle Scholar
  7. 7.
    Von Werne, T, Patten, TE 1999J. Am. Chem. Soc.1217409CrossRefGoogle Scholar
  8. 8.
    Heron, N, Thorn, DL 1998Adv. Mater.101173CrossRefGoogle Scholar
  9. 9.
    S. C. Mojumdar and L. Raki, J. Therm. Anal. Cal., in press.Google Scholar
  10. 10.
    Kanatzidis, MG, Tonge, LM 1987J. Am. Chem. Soc.1093797CrossRefGoogle Scholar
  11. 11.
    Drábik, M, Gáliková, L, Varshney, KG, Quraishi, MA 2004J. Therm. Anal. Cal.7691CrossRefGoogle Scholar
  12. 12.
    Pushpalal, GKD 2000J. Mater. Sci.35981CrossRefGoogle Scholar
  13. 13.
    Li, BX, Liang, WQ, Zhang, WS, He, Z 2000J. Chin. Cer. Soc.28325Google Scholar
  14. 14.
    Mojumdar, SC 2001J. Therm. Anal. Cal.641133CrossRefGoogle Scholar
  15. 15.
    Drabik, M, Mojumdar, SC, Galikova, L 2001Cem. Concr. Res.31751CrossRefGoogle Scholar
  16. 16.
    Jüna, E, Rudinská, E, Sapietová, M, Pajtášová, M, Ondrušová, D, Jorík, V, Mojumdar, SC 2005Res. J. Chem. Environ.941Google Scholar
  17. 17.
    Mojumdar, SC, Ray, A, Drábik, M, Cigan, A, Hanic, F, Capek, P 2003Sol. Stat. Phenom.90–91365CrossRefGoogle Scholar
  18. 18.
    Drabik, M, Galikova, L, Mojumdar, SC 2002Key Eng. Mater.206–2131867CrossRefGoogle Scholar
  19. 19.
    Kendal, K, Howard, AJ, Birchal, JD 1983Philos. Trans. R. Soc.A310139Google Scholar
  20. 20.
    Drábik, M, Mojumdar, SC, Slade, RCT 2002Ceram.–Silik.4668Google Scholar
  21. 21.
    Delucchii, M, Cerisola, G 2001Constr. Build. Mater.15351CrossRefGoogle Scholar
  22. 22.
    Mojumdar, SC 2001Challenges for Coord. Chemistry in the New Century5453Google Scholar
  23. 23.
    Mojumdar, SC 2005Res. J. Chem. Environ.923Google Scholar
  24. 24.
    Rha, CY, Seong, JW, Kim, CE, Lee, SK, Kim, WK 1999J. Mater. Sci.344653CrossRefGoogle Scholar
  25. 25.
    Desai, PG, Lewis, JA, Bentz, DP 1994J. Mater. Sci.29711CrossRefGoogle Scholar
  26. 26.
    Ibrahim, IAA, ElSersy, HH, Abadir, MF 2004J. Therm. Anal. Cal.76713CrossRefGoogle Scholar
  27. 27.
    Dweck, J, Ferreira da Silva, PF, Silva Aderne, R, Büchler, PM, Cartledge, FK 2003J. Therm. Anal. Cal.71821CrossRefGoogle Scholar
  28. 28.
    Mojumdar, S.C, Chowdhury, B, Varshney, KG, Mazanec, K 2004J. Therm. Anal. Cal.78135CrossRefGoogle Scholar
  29. 29.
    Ramadevi, A, Srinivasan, K 2005Res. J. Chem. Environ.954Google Scholar
  30. 30.
    Drabik, M, Slade, RCT 2004Interface Sci.12375CrossRefGoogle Scholar
  31. 31.
    Farges, JP,  et al. 1994Organic ConductorsMarcel DekkerNew YorkGoogle Scholar
  32. 32.
    Ishiguro, T, Yamaji, K,  et al. 1990Organic Super ConductorsSpringerBerlinGoogle Scholar
  33. 33.
    Bosshard, Ch, Sutter, K, Pretre, Ph, Hulliger, J, Florsheimer, M, Kaatz, P, Gunter, P,  et al. 1995Organic Non-linear Optical MaterialGordon and BreachLondonGoogle Scholar
  34. 34.
    Zhengdong, L, Baichang, W, Genbo, S, Huwnag, G 1997Appl. Phys. Lett.70562CrossRefGoogle Scholar
  35. 35.
    Halbout, JM 1979J. Quantum Electron.QE–151176CrossRefGoogle Scholar
  36. 36.
    Zerkowski, JA, MacDonald, JC, Whitesides, GM 1997Chem. Mater.91933CrossRefGoogle Scholar
  37. 37.
    Chemla, DS, Zyss, J,  et al. 1986Non-linear optional properties of organic molecules and crystals. Vol. IAcademic PressFlorida, USAGoogle Scholar
  38. 38.
    Chakkaravanthi, AA, Perumal, CKL, Santhanaraghavan, P, Jayavel, P, Selvan, R, Sivaji, K, Gopalakrishnam, R, Ramasamy, P 2002Mater. Sci. Eng.B95236Google Scholar
  39. 39.
    Karl, N 1990J. Cryst. Growth991009Google Scholar
  40. 40.
    Chakkaravanthi, AA, Permal, CKL, Santhanaraghavan, P, Rakeshkumar, KS, Muralithar, S, Ramasamy, P 2002J. Cryst. Growth85246Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • G. Madhurambal
    • 1
  • P. Ramasamy
    • 2
  • P. A. Srinivasan
    • 3
  • S. C. Mojumdar
    • 4
  1. 1.Department of ChemistryADM College for WomenNagapattinamIndia
  2. 2.Crystal Growth CentreAnna UniversityChennaiIndia
  3. 3.Department of ChemistryA.V.C. CollegeMayiladuthuraiIndia
  4. 4.Institute for Research in ConstructionNational Research Council CanadaOttawaCanada

Personalised recommendations