Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 89, Issue 3, pp 887–891 | Cite as

Compatibility of fibroin/chitosan and fibroin/cellulose blends studied by thermal analysis

  • E. S. Sashina
  • G. Janowska
  • M. Zaborski
  • A. V. Vnuchkin
Article

Abstract

The compatibility of fibroin with chitosan was confirmed by means of the DSC method, measuring thermal characteristics of blends of these components in the form of films obtained from solutions in a common solvent such as HFIP. Polymers have the general temperatures of glass transition and the beginnings of degradation of crystal areas. The TG analysis of fibroin/cellulose blends in the form of films obtained from NMMO solutions has shown that the thermal stability of such blends is higher than that of cellulose owing to the strong interaction between the components, which is also shown by the decreased mass loss rate of the blend during thermal treatment, as compared to that of individual components.

Keywords

blends cellulose chitosan DSC fibroin TG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Jarerat, Y. Tokiwa and H. Tanaka, Appl. Microbiol. Biotechnol., 72 (2006) 726.CrossRefGoogle Scholar
  2. 2.
    D.-H. Roh, S.-Y. Kang, J.-Y. Kim, Y.-B. Kwon, H. Y. Kweon, K. G. Lee, Y.-H. Park, R.-M. Baek, C.-Y. Heo, Y. Hhoe and J.-H. Lee, J. Mater. Sci., 17 (2006) 547.CrossRefGoogle Scholar
  3. 3.
    Q. Cheng, T.-Z. Peng, X.-B. Hu and C. F. Yang, Anal. Bioanal. Chem., 382 (2005) 80.CrossRefGoogle Scholar
  4. 4.
    H. Kweon, C. H. Ha, I. Um and Y. H. Park, J. Appl. Polym. Sci., 80 (2001) 928.CrossRefGoogle Scholar
  5. 5.
    E. S. Sashina, A. M. Bochek, N. P. Novoselov and D. A. Kirichenko, Russ. J. Appl. Chem., 79 (2006) 869.CrossRefGoogle Scholar
  6. 6.
    G. Freddi, M. Romano, M. R. Massafra and M. Tsukada, J. Appl. Polym. Sci., 56 (1995) 1537.CrossRefGoogle Scholar
  7. 7.
    X. Chen, W. Li, Z. Shao, W. Zhong and T. Yu, J. Appl. Polym. Sci., 73 (1999) 975.CrossRefGoogle Scholar
  8. 8.
    M. Mayo-Pedrosa, C. Alvarez-Lorenzo and A. Conchiero, J. Therm. Anal. Cal., 77 (2004) 681.CrossRefGoogle Scholar
  9. 9.
    S. Nakamura, J. Magoshi and Y. Magoshi, Thermal Properties of Silk Proteins in Silkworms, Silk polymers: Material Science and Biotechnology/D. Kaplan, W. W. Adams, B. L. Farmer, Ch. Vincy, Eds, Amer. Chem. Soc., Washington 1994, pp. 211–221.Google Scholar
  10. 10.
    Chitin and Chitosan: Receive, Behavior, and Application (in Russian), K. G. Skryabina, G. A. Vichoreva and V. P. Varlamov, Eds, Nauka, Moscow 2002, p. 368.Google Scholar
  11. 11.
    R. G. Zbankov and V. P. Kozlov, Physic of Cellulose and its Derivatives, Nauka i technika, Minsk 1983, p. 296.Google Scholar
  12. 12.
    Yu. B. Grunin, M. E. Gordeev, L. N. Veselov and A. S. Maslennikov, Zh. Fiz. Khim., 64 (1990) 3343.Google Scholar
  13. 13.
    N. Nishioka, S. Hamabe, T. Murakami and T. Kitagawa, J. Appl. Polym. Sci., 69 (1998) 2133.CrossRefGoogle Scholar
  14. 14.
    N. Nishioka, Y. Nakano, T. Hirota, N. Fujiwara and M. Uno, J. Appl. Polym. Sci., 59 (1996) 1203.CrossRefGoogle Scholar
  15. 15.
    N. Nishioka, M. Yamaoka, H. Haneda, K. Kawakami and M. Uno, Macromolecules, 26 (1993) 4694.CrossRefGoogle Scholar
  16. 16.
    Pat. RU No. 2004134472, 25.11. 2004, E. S. Sashina and N. P. Novoselov.Google Scholar
  17. 17.
    E. S. Sashina, N. P. Novoselov, D. Vorbach and F. Meister, Polym. Sci., Ser. A, 47 (2005) 1096.Google Scholar
  18. 18.
    H. Kweon, S. O. Woo and Y. H. Park, J. Appl. Polym. Sci., 81 (2001) 2271.CrossRefGoogle Scholar
  19. 19.
    K. A. Trabbic and P. Yager, Macromolecules, 31 (1998) 462.CrossRefGoogle Scholar
  20. 20.
    O. Livak, A. Blye, N. Shah and L. W. Jelinski, Macromolecules, 31 (1998) 2947.CrossRefGoogle Scholar
  21. 21.
    J. E. Santos, E. R. Dockal and E. T. G. Cavalheiro, J. Therm. Anal. Cal., 79 (2005) 243.CrossRefGoogle Scholar
  22. 22.
    R. Valluzzi and S. P. Gido, Biopolymers, 42 (1997) 705.CrossRefGoogle Scholar
  23. 23.
    Y. Takanashi, M. Gehoh and K. Yuzuriha, J. Polym. Sci., Polym. Phys., 29 (1991) 889.CrossRefGoogle Scholar
  24. 24.
    L. Majdanac, D. Cosic and N. Nesovic, J. Therm. Anal. Cal., 38 (2005) 907.Google Scholar
  25. 25.
    I. Milosavljevic and E. M. Snuberg, Ind. Eng. Chem. Res., 34 (1995) 1081.CrossRefGoogle Scholar
  26. 26.
    S. Kokot and Y. Pingyu, Anal. Chim. Acta, 304 (1995) 297.CrossRefGoogle Scholar
  27. 27.
    M. J. Antal and G. Várhegyi, Ind. Eng. Chem. Res., 34 (1995) 703.CrossRefGoogle Scholar
  28. 28.
    T. L. Lowary and G. N. Richards, Carbohydr. Res., 198 (1990) 79.CrossRefGoogle Scholar
  29. 29.
    G. Várhegyi, P. Szabó, W. S.-L. Mok and M. J. Antal, J. Anal. Appl. Pyrolysis, 26 (1993) 159.CrossRefGoogle Scholar
  30. 30.
    E. Princi, S. Vicini, E. Pedemonte, V. Arighi and I. McEwen, J. Therm. Anal. Cal., 80 (2005) 369.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  • E. S. Sashina
    • 1
  • G. Janowska
    • 2
  • M. Zaborski
    • 2
  • A. V. Vnuchkin
    • 1
  1. 1.St. Petersburg State University of Technology and DesignSt. PetersburgRussia
  2. 2.Technical University of ŁódźŁódPoland

Personalised recommendations