Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 85, Issue 3, pp 551–557 | Cite as

Thermodynamic investigation of room temperature ionic liquid

Heat capacity and thermodynamic functions of BMIBF4
  • Zhang Z. H. 
  • Tan Z. C. 
  • Li Y. S. 
  • Sun L. X. 
Article

Abstract

The molar heat capacities of the room temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF4) were measured by an adiabatic calorimeter in temperature range from 80 to 390 K. The dependence of the molar heat capacity on temperature is given as a function of the reduced temperature X by polynomial equations, C P,m (J K–1 mol–1)= 195.55+47.230 X–3.1533 X 2+4.0733 X 3+3.9126 X 4 [X=(T–125.5)/45.5] for the solid phase (80~171 K), and C P,m (J K–1 mol–1)= 378.62+43.929 X+16.456 X 2–4.6684 X 3–5.5876 X 4 [X=(T–285.5)/104.5] for the liquid phase (181~390 K), respectively. According to the polynomial equations and thermodynamic relationship, the values of thermodynamic function of the BMIBF4 relative to 298.15 K were calculated in temperature range from 80 to 390 K with an interval of 5 K. The glass translation of BMIBF4 was observed at 176.24 K. Using oxygen-bomb combustion calorimeter, the molar enthalpy of combustion of BMIBF4 was determined to be Δc H m o= – 5335±17 kJ mol–1. The standard molar enthalpy of formation of BMIBF4 was evaluated to be Δf H m o= –1221.8±4.0 kJ mol–1 at T=298.150±0.001 K.

Keywords

adiabatic calorimetry BMIBF4 combustion calorimetry glass translation heat capacity room temperature ionic liquid standard enthalpy of formation thermodynamic function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gordon, CM, Holbrey, JD, Kennedy, AR, Seddon, KR 1998J. Mater. Chem.82627CrossRefGoogle Scholar
  2. 2.
    Fuller, J, Cartin, RT, Osteryoung, RA 1997J. Electrochem. Soc.1443881CrossRefGoogle Scholar
  3. 3.
    Sun, J, Forsyth, M, Macfarlane, DR 1998J. Phys. Chem. B.1028858CrossRefGoogle Scholar
  4. 4.
    Welton, T 1999Chem. Rev.992071CrossRefGoogle Scholar
  5. 5.
    Carmichael, AJ, Seddon, KR 2000J. Phys. Org. Chem.13591CrossRefGoogle Scholar
  6. 6.
    Song, CE, Shim, WH, Roh, EJ, Lee, SG, Choi, JH 2001Chem. Commun.121122CrossRefGoogle Scholar
  7. 7.
    Wasserscheid, P, Gordon, CM, Hilgers, C, Muldoon, MJ, Dunkin, IR 2001Chem. Commun.131186CrossRefGoogle Scholar
  8. 8.
    Wheeler, C, West, KN, Liotta, CL, Eckert, CA 2001Chem. Commun.10887CrossRefGoogle Scholar
  9. 9.
    Endres, F 2001Phys. Chem. Chem. Phys.33165CrossRefGoogle Scholar
  10. 10.
    Najdanovic-Visak, V, Esperanca, JMSS, Rebelo, LPN 2002Phys. Chem. Chem. Phys.41701CrossRefGoogle Scholar
  11. 11.
    Vasserscheid, P, Keim, W 2000Angew. Chem. Int. Ed.393772CrossRefGoogle Scholar
  12. 12.
    Holbrey, JD, Seddon, KR 1999Clean Products Processes1223Google Scholar
  13. 13.
    Appleby, D, Hussey, CL, Seddon, KR, Turp, JE 1986Nature323614CrossRefGoogle Scholar
  14. 14.
    Anthony, JL, Maginn, FJ, Brennecke,  2001J. Phys. Chem. B.10510942CrossRefGoogle Scholar
  15. 15.
    Yang, JZ, Tian, P, He, LL, Xu, WG 2003Fluid Phase Equilib.204295CrossRefGoogle Scholar
  16. 16.
    Yang, JZ, Xu, WG, Zhang, QG 2003J. Chem. Thermodyn.351855CrossRefGoogle Scholar
  17. 17.
    Yang, JZ, Tian, P, Xu, WG 2004Thermochim. Acta4121CrossRefGoogle Scholar
  18. 18.
    Holbrey, JD, Reichert, WM, Swatloski, RP 2002Green Chem.4407CrossRefGoogle Scholar
  19. 19.
    Fuller, J, Osteryoung, RA, Carlin, RT 1995J. Electrochem. Soc.1423632CrossRefGoogle Scholar
  20. 20.
    Jacobsen, EN, Marko, I, Sharpless, KB 1988J. Am. Chem. Soc.1101986CrossRefGoogle Scholar
  21. 21.
    Bonhote, P, Dias, A.P, Papageorgiou, N, Kalyanasundaram, K, Gratzel, M 1996Inorg. Chem.351168CrossRefGoogle Scholar
  22. 22.
    Suarez, PAZ, Dullius, JEL, Einloft, S, Souza, RFD, Dupnot, J 1996Polyhedron1571217CrossRefGoogle Scholar
  23. 23.
    Dyson, PJ, Grossel, MC, Srinivasan, N, Vine, T, Welton, T, Williams, DJ, White, AJP, Zigras, T 1997Dalton193465Google Scholar
  24. 24.
    Lau, RM, van Rantwijk, F, Seddon, KR, Sheldon, RA 2000Org. Lett.24189CrossRefGoogle Scholar
  25. 25.
    Dyson, PJ, Grossel, MC, Srinivasan, N, Vine, T, Welton, T, Williams, DJ, White, AJP, Zigras, T 1997J. Chem. Soc., Dalton Trans.13465CrossRefGoogle Scholar
  26. 26.
    Tan, ZC, Sun, GY, Sun, Y, Yin, AX, Wang, WB, Ye, JC, Zhou, LX 1995J. Thermal Anal.4559Google Scholar
  27. 27.
    Tan, ZC, Sun, LX, Meng, SH, Li, L, Xu , F, Liu, PYBP, Zhang, JB 2002J. Chem. Thermodyn.341417CrossRefGoogle Scholar
  28. 28.
    Archer, G 1993J. Phys. Chem. Ref. Data221441CrossRefGoogle Scholar
  29. 29.
    Di, YY, Tan, ZC, Sun, XH, Wang, MH, Xu, F, Liu, YF, Sun, LX, Zhang, HT 2004J. Chem. Thermodyn.3679CrossRefGoogle Scholar
  30. 30.
    Wang, SX, Tan, ZC, Di, YY, Xu, F, Wang, MH, Sun, LX, Zhang, T 2004J. Therm. Anal. Cal.76335CrossRefGoogle Scholar
  31. 31.
    Xu, F, Sun, LX, Tan, ZC, Di, J.GLiang YY, Tian, QF, Zhang., T 2004J. Therm. Anal. Cal.76481CrossRefGoogle Scholar
  32. 32.
    Nan, ZD, Tan, ZC 2004J. Therm. Anal. Cal.76955CrossRefGoogle Scholar
  33. 33.
    Xue, B, Wang, JY, Tan, ZC, Lu, SW, Meng, SH 2004J. Therm. Anal. Cal.76965CrossRefGoogle Scholar
  34. 34.
    Song, YJ, Tan, ZC, Lu, SW, Xue, Y 2004J. Therm. Anal. Cal.77873CrossRefGoogle Scholar
  35. 35.
    Tan, ZC, Xue, B, Lu, SW, Meng, SH, Yuan, XH, Song, YJ 2001J. Therm. Anal. Cal.63297CrossRefGoogle Scholar
  36. 36.
    Skinner, HA,  et al. 1962Experimental Thermochemistry, Vol. 2John Wiley and SonsNew York, LondonGoogle Scholar
  37. 37.
    Cox, JD, Wagman, DD, Medvedev, VA,  et al. 1989CODATA Key Values for ThermodynamicsHemisphereNew YorkGoogle Scholar
  38. 38.
    Cox, JD 1978J. Chem. Thermodyn.10903CrossRefGoogle Scholar
  39. 39.
    M. W. Chase, Jr., NIST-JANAF Thermochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph, 9 (1998) 1–1951.Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Zhang Z. H. 
    • 1
  • Tan Z. C. 
    • 1
  • Li Y. S. 
    • 2
  • Sun L. X. 
    • 1
  1. 1. Thermochemistry Laboratory, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianP. R. China
  2. 2.College of Environmental Science and EngineeringDalian Jiaotong UniversityDalianChina

Personalised recommendations