Journal of Thermal Analysis and Calorimetry

, Volume 89, Issue 2, pp 625–631 | Cite as

Study by thermal methods on the materials obtained by dye removal from waste waters with beech flour

  • Lucia Odochian
  • Viorica Dulman
  • M. Dumitraş
  • A. Pui


The study is devoted to the characterization by both TG-DTG analysis and FTIR spectroscopy of beech flour, dyes and the sorbent-dyes products obtained through retention of the dyes from aqueous solution on the beech flour, to the aim of obtaining information on the nature of dyes’ retention, thermal behavior of the sorbent-dye materials as well as on their possible upgrading as fuel.

Thermal analysis led to the conclusion that the mechanism of thermo-oxidative degradation is specific and the retention of dyes occurs on cellulose from beech flour. The nature of the bonds involved in dyes’ retention is also investigated by FTIR analysis, which evidences that dyes retention on cellulose is realized through hydrogen bonding between the NH and, respectively, OH groups from dye molecule and the oxygen atoms from cellulose. Involvement of the non-participating electrons of the nitrogen and, respectively, oxygen atoms of these groups in the extended electronic conjugation with aromatic nuclei strongly influences the capacity of the amino and, respectively, hydroxyl groups of forming hydrogen bonds, thus achieving dyes fixation on the sorbent. DTA analysis led to the conclusion that an improvement in the quality of the sorbent-dye materials as fuels is possible, as compared to untreated beach flour, as a result of the modification of the cellulosic fibers in the process of dyes retention.


beech flour DTA DTG dye removal FTIR TG thermal analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. L. Michelsen, L. I. Fulk, R. M. Woodby and G. D. Boardman, Emerging Technologies in Hazardous Waste Management III, D. W. Tedder and F. G. Pohland Ed., Washington D.C. 1993.Google Scholar
  2. 2.
    A. Bertea and R. Butnaru, Aspecte ecologice si toxicologice ale finisării chimice textile, Dosoftei, Iaşi 1997.Google Scholar
  3. 3.
    P. Cooper, J. Soc. Dyers Colour, 109 (1993) 97.CrossRefGoogle Scholar
  4. 4.
    R. S. Shukla and V. D. Sachardande, J. Appl. Polym. Sci., 42 (1991) 829.CrossRefGoogle Scholar
  5. 5.
    V. K. Garg, R. Gupta, A. B. Yadav and R. Kumar, Biores. Technol., 89 (2003) 121.CrossRefGoogle Scholar
  6. 6.
    V. K. Gupta, I. Ali, S. Mohan and D. Mohan, J. Colloid Interface Sci., 265 (2003) 257.CrossRefGoogle Scholar
  7. 7.
    V. J. Poots, G. McKay and J. J. Healy, Water Res., 10 (1976) 1067.CrossRefGoogle Scholar
  8. 8.
    Y. S. Ho and G. McKay, Chem. Eng. J., 70 (1998) 115.Google Scholar
  9. 9.
    W. Wardas and J. Lebek, Cellulose Chem. Technol., 28 (1994) 255.Google Scholar
  10. 10.
    C. Namasivayam, M. Dinesh Kumar, K. Selvi, R. Ashruffunissa Begum, T. Vanathi and R. T. Yamuna, Biomass Bioenergy, 21 (2001) 477.CrossRefGoogle Scholar
  11. 11.
    F. Banat, S. Al-Asheh and L. Al-Makadahmeh, Proc. Biochem., 39 (2003) 193.CrossRefGoogle Scholar
  12. 12.
    S. Stefanicich, F. Delben and R. A. A. Muzzarelly, Carbohydr. Polym., 24 (1994) 17.CrossRefGoogle Scholar
  13. 13.
    L. C. Morais, O. M. Freitas, E. P. Goncalves, L. T. Vasconcelos and G. G. Ganzales Beca, Water Res., 21 (1987) 1513.CrossRefGoogle Scholar
  14. 14.
    Z. Yermiyahu, A. Landau, A. Zaban, I. Lapides and S. Yariv, J. Therm. Anal. Cal., 72 (2003) 431.CrossRefGoogle Scholar
  15. 15.
    M. Epstein, I. Lapides and S. Yariv, J. Therm. Anal. Cal., 82 (2005) 585.CrossRefGoogle Scholar
  16. 16.
    G. Rytwo, R. Huterer-Harari, S. Dultz and Y. Gonen, J. Therm. Anal. Cal., 84 (2006) 225.CrossRefGoogle Scholar
  17. 17.
    A. Landau, A. Zaban, I. Lapides and S. Yariv, J. Therm. Anal. Cal., 70 (2002) 103.CrossRefGoogle Scholar
  18. 18.
    V. Dulman, S. Cucu-Man and V. I. Popa, Cellulose Chem. Technol., 36 (2002) 515.Google Scholar
  19. 19.
    V. Dulman, S. Cucu-Man and V. I. Popa, J. Balkan Ecology, 5 (2002) 94.Google Scholar
  20. 20.
    V. Dulman, L. Odochian, M. Dumitraş and S. Cucu-Man, J. Serb. Chem. Soc., 70 (2005) 1325.CrossRefGoogle Scholar
  21. 21.
    V. Dulman, S. Cucu-Man, V. I. Popa and R. Mureşan, An. St. Univ. ‘Al. I. Cuza’ Iasi, Seria Chimie, VII (2000) 245.Google Scholar
  22. 22.
    V. Dulman, L. Odochian and M. Dumitraş, 13rd Annual Symposium of Scientific Communications, Romanian Academy, Thermal Analysis and Calorimetry Committee, Bucharest, February 2004.Google Scholar
  23. 23.
    M. Macoveanu, F. Ciobanu, E. Costea, G. Cazacu and C. Vasile, Cellulose Chem. Technol., 318 (1997) 361.Google Scholar
  24. 24.
    C. Simionescu, M. Grigoraş, A. Cernătescu Asandei and Gh. Rozamarin, The Chemistry of Romanian Wood, Romanian Academy, Bucharest 1973, p. 132.Google Scholar
  25. 25.
    M. Avram and G. D. Mateescu, Infrared Spectroscopy: Applications in Organic Chemistry, Krieger Publishing, Huntington, NY 1978.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  • Lucia Odochian
    • 1
  • Viorica Dulman
    • 1
  • M. Dumitraş
    • 1
  • A. Pui
    • 1
  1. 1.Faculty of ChemistryThe ‘Al. I. Cuza’ UniversityIassyRomania

Personalised recommendations