Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 85, Issue 3, pp 811–815 | Cite as

Temperature programmed desorption of F-doped SnO2 films deposited by inverted pyrosol technique

  • Aukkaravittayapun S. 
  • Thanachayanont C. 
  • Theapsiri T. 
  • Veerasai W. 
  • Sawada Y. 
  • Kondo T. 
  • Tokiwa S. 
  • Nishide T. 
Article

Abstract

Fluorine-doped tin dioxide (FTO) films were deposited on silicon wafers by inverted pyrosol technique using solutions with different doping concentration (F/Sn=0.00, 0.12, 0.75 and 2.50). The physical and electrical properties of the deposited films were analyzed by SEM, XRF, resistivity measurement by four-point-probe method and Hall coefficient measurement by van der Pauw method. The electrical properties showed that the FTO film deposited using the solution with F/Sn=0.75 gave a lowest resistivity of 3.2·10–4 ohm cm. The FTO films were analyzed by temperature programmed desorption (TPD). Evolved gases from the heated specimens were detected using a quadruple mass analyzer for mass fragments m/z, 1(H+), 2(H2 +), 12(C+), 14(N+), 15(CH3 +), 16(O+), 17(OH+ or NH3 +), 18(H2O+ or NH4 +), 19(F+), 20(HF+), 28(CO+ or N2 +), 32(O2 +), 37(NH4F+), 44(CO2 +), 120(Sn+), 136(SnO+) and 152(SnO2 +). The majority of evolved gases from all FTO films were water vapor, carbon monoxide and carbon dioxide. Fluorine (m/z 19) was detected only in doped films and its intensity was very strong for highly-doped films at temperature above 400°C.

Keywords

F-doped SnO2 inverted pyrosol temperature programmed desorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Aukkaravittayapun, Thai Patent, filed No. 098821, 22 March, 2005.Google Scholar
  2. 2.
    Pommier, R, Gril, C, Marucchi, J 1981Thin Solid Films7791CrossRefGoogle Scholar
  3. 3.
    Agashe, C, Takwale, MG, Marathe, BR, Bhide, VG 1988Sol. Energy Mater.1799CrossRefGoogle Scholar
  4. 4.
    Haitjema, H, Elich, JJPh, Hoogendoorn, CJ 1989Sol. Energy Mater.18283CrossRefGoogle Scholar
  5. 5.
    Sawada, Y, Seki, S, Sano, M, Miyabayashi, N, Ninomiya, K, Iwasawa, A, Tsugoshi, T, Ozao, R, Nishimoto, Y 2004J. Therm. Anal. Cal.77751CrossRefGoogle Scholar
  6. 6.
    Seki, S, Aoyama, T, Sawada, Y, Ogawa, M, Sano, M, Miyabayashi, N, Yoshida, H, Hoshi, Y, Ide, M, Shida, A 2002J. Therm. Anal. Cal.691021CrossRefGoogle Scholar
  7. 7.
    Blandenet, G, Court, M, Lagarde, Y 1981Thin Solid Films7781CrossRefGoogle Scholar
  8. 8.
    NIST database No. 4.Google Scholar
  9. 9.
    NIST database No. 36.Google Scholar
  10. 10.
    NIST database No. 8.Google Scholar
  11. 11.
    NIST database No. 1.Google Scholar
  12. 12.
    NIST database No. 10.Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Aukkaravittayapun S. 
    • 1
  • Thanachayanont C. 
    • 1
  • Theapsiri T. 
    • 2
  • Veerasai W. 
    • 2
  • Sawada Y. 
    • 3
  • Kondo T. 
    • 3
  • Tokiwa S. 
    • 4
  • Nishide T. 
    • 4
  1. 1.National Metal and Materials Technology Center (MTEC)Klong Luang PathumthaniThailand
  2. 2.Department of Chemistry, Faculty of ScienceMahidol UniversityBangkokThailand
  3. 3.Department of Industrial Chemistry, Graduate School of EngineeringTokyo Polytechnic UniversityIiyama AtsugiJapan
  4. 4.Department of Materials Chemistry and EngineeringCollege of Nihon UniversityTamura, KoriyamaJapan

Personalised recommendations