Journal of Thermal Analysis and Calorimetry

, Volume 89, Issue 1, pp 223–231 | Cite as

Influence of the addition of erbium and ytterbium triflates in the curing kinetics of a DGEBA/o-tolybiguanide powder mixture

Regular Papers Organics/Polymers


Solid bisphenol-A epoxy resin (DGEBA) of medium molecular mass was cured using o-tolylbiguanide (TBG) as cross-linking agent. In order to improve the kinetics of the reactive system, two Lewis acid catalysts (erbium(III) and ytterbium(III) trifluoromethanesulfonates) were added in proportions of 1 phr. The kinetic study was performed by dynamic scanning calorimetry (DSC) and the complete kinetic triplet (E, A and g(α)) determined. The kinetic analysis was performed with an integral isoconversional procedure (model-free), and the kinetic model was determined by the Coats-Redfern method and through the compensation effect (IKR). All the systems followed the m=1.5/n=0.5 isothermal curing model simulated from non-isothermal experiments. The addition of a little proportion of ytterbium or erbium triflates accelerated the curing process. In order to extract further information about the role of the lanthanide triflates added to epoxy/TBG systems, the kinetic results were compared with our previous kinetic studies made on DGEBA/lanthanide triflates initiated systems.


catalyst epoxy erbium triflate kinetics (polym.) ytterbium triflate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. S. Lee, H. Z. Y. Han, J. G. Hilborn and J.-A. E. Manson, Prog. Org. Coat., 36 (1999) 79.CrossRefGoogle Scholar
  2. 2.
    U.S. Enviromental Protection Agency Center for Environmental Research Information, ’Technical Reference Manual on Techniques for reducing or eliminating releases of toxic chemicals in metal painting’, 1995.Google Scholar
  3. 3.
    R. S. Bauer and L. S. Corley, ’Epoxy Resins: Composites Technology’, S. M. Lee, Technomid Publishing Company, Inc., Pennsylvania 1989.Google Scholar
  4. 4.
    M. Ochi, K. Mimura and H. Motobe, J. Adhes. Sci. Technol., 8 (1994) 223.Google Scholar
  5. 5.
    B. Szczepaniak, K. C. Frisch, P. Penczek, J. Rejdych and A. Winiarska, J. Polym. Sci: Part A: Polym. Chem., 35 (1997) 2739.CrossRefGoogle Scholar
  6. 6.
    J. M. Barton and K. Dusek, Adv. Polym. Sci., 72 (1985) 112.Google Scholar
  7. 7.
    T. Endo and F. Sanda, Macromol. Symp., 107 (1996) 237.Google Scholar
  8. 8.
    The Powder Coating Institute, ’PCI Technical Brief No. 1’, USA.Google Scholar
  9. 9.
    C. Mas, A. Serra, A. Mantecón, J. M. Salla and X. Ramis, Macromol. Chem. Phys., 202 (2001) 2554.CrossRefGoogle Scholar
  10. 10.
    S. Kobayashi, Synlett, 689 (1996).Google Scholar
  11. 11.
    L. Matejka, P. Chabanne, L. Tighzert and J. P. Pascault, J. Polym. Sci. Part A: Polym. Chem., 32 (1994) 1447.CrossRefGoogle Scholar
  12. 12.
    P. Chabanne, L. Tighzert and J. P. Pascault, J. Appl. Polym. Sci., 53 (1994) 769.CrossRefGoogle Scholar
  13. 13.
    P. Castell, M. Galià, A. Serra, J. M. Salla and X. Ramis, Polymer, 41 (2000) 8465.CrossRefGoogle Scholar
  14. 14.
    S. J. García, X. Ramis, A. Serra and J. Suay, J. Therm. Anal. Cal., 83 (2006) 429.CrossRefGoogle Scholar
  15. 15.
    S. J. García, X. Ramis, A. Serra and J. Suay, Thermochim. Acta, 441 (2006) 45.CrossRefGoogle Scholar
  16. 16.
    S. Luo, B. Zhang, P. G. Wang and J. Cheng, Synt. Commun., 33 (2003) 2989.CrossRefGoogle Scholar
  17. 17.
    M. Chini, P. Crotti, L. Favero, F. Macchia and M. Pineschi, Tetrahedron Lett., 35 (1994) 433.CrossRefGoogle Scholar
  18. 18.
    M. Meguro, N. Asao and Y. Yamamoto, J. Chem. Soc. Perkin Trans. I, 2597 (1994).Google Scholar
  19. 19.
    H. E. Kissinger, Anal. Chem., 29 (1957) 1702.CrossRefGoogle Scholar
  20. 20.
    X. Ramis, J. M. Salla, C. Mas, A. Mantecón and A. Serra, J. Appl. Polym. Sci., 92 (2004) 381.CrossRefGoogle Scholar
  21. 21.
    X. Ramis, J. M. Salla and J. Puiggalí, J. Polym. Sci. Part A: Polym. Chem., 43 (2005) 1166.CrossRefGoogle Scholar
  22. 22.
    J. Macan, I. Brnardić, M. Ivanković and H. J. Mencer, J. Therm. Anal. Cal., 81 (2005) 369.CrossRefGoogle Scholar
  23. 23.
    X. Ramis, A. Cadenato, J. M. Morancho and J. M. Salla, Polymer, 44 (2003) 2067.CrossRefGoogle Scholar
  24. 24.
    X. Ramis, J. M. Salla, A. Cadenato and J. M. Morancho, J. Therm. Anal. Cal., 72 (2003) 707.CrossRefGoogle Scholar
  25. 25.
    A. W. Coats and J. Redfern, Nature, 207 (1964) 290.Google Scholar
  26. 26.
    M. J. Starink, Thermochim. Acta, 404 (2003) 163.CrossRefGoogle Scholar
  27. 27.
    L. A. Pérez-Maqueda, P. E. Sánchez-Jiménez and J. M. Criado, Polymer, 46 (2005) 2950.CrossRefGoogle Scholar
  28. 28.
    S. Vyazovkin and W. Linert, Int. Rev. Phys. Chem., 14 (1995) 355.CrossRefGoogle Scholar
  29. 29.
    S. Vyazovkin and C. A. Wight, Annu. Rev. Phys. Chem., 48 (1997) 125.CrossRefGoogle Scholar
  30. 30.
    X. Ramis, A. Cadenato, J. M. Salla, J. M. Morancho, A. Vallés, L. Contat and A. Ribes, Polym. Degrad. Stab., 86 (2004) 483.CrossRefGoogle Scholar
  31. 31.
    S. Vyazovkin and W. Linert, J. Solid State Chem., 114 (1995) 392.CrossRefGoogle Scholar
  32. 32.
    S. Vyazovkin and W. Linert, Chem. Phys., 193 (1995) 109.CrossRefGoogle Scholar
  33. 33.
    J. M. Barton and W. W. Wright, Thermochim. Acta, 85 (1985) 411.CrossRefGoogle Scholar
  34. 34.
    J. M. Criado, Thermochim. Acta, 24 (1978) 186.CrossRefGoogle Scholar
  35. 35.
    F. J. Gotor, J. M. Criado, J. Malek and N. Koga, J. Phys. Chem. A, 104 (2000) 10777.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  1. 1.Àrea de Ciència dels Materials, Departament d’Enginyeria de Sistemes Industrials i DissenyUniversitat Jaume ICastellónSpain
  2. 2.Departament de Q. Analítica i Q. Orgànica, Facultat de QuímicaUniversitat Rovira i VirgiliTarragonaSpain
  3. 3.Laboratori de Termodinàmica, Escola Tècnica Superior Enginyeria Industrial BarcelonaUniversitat Politècnica de CatalunyaBarcelonaSpain
  4. 4.Centro de BiomaterialesUniversitat Politècnica de ValènciaValènciaSpain

Personalised recommendations