Journal of Thermal Analysis and Calorimetry

, Volume 89, Issue 1, pp 191–196 | Cite as

Examination of polyolefins-organic compounds interactions by inverse gas chromatography

Regular Papers Organics/Polymers


The investigations of interactions between polyolefins and test solutes at temperatures 58–122°C were carried out in the work. The test solutes were intentionally selected as representatives of the most important groups of compounds occurring in technological oils, which may be used as additives in conditions of industrial decomposition of polyolefins in Poland. For this purpose both the Flory-Huggins theory and inverse gas chromatography (IGC) were used. On the basis of retention data the values of both interaction and solubility parameters of analyzed polymers were determined. Solubility parameter δ and interaction parameter χ are related to some heat quantities e.g. excess free energy of mixing. It was observed influence of molecular mass and existence of chain branches on the values of the parameters. The obtained values allowed determination of influence of composition change of typical technological oils on their interactions with polymers and, at the same time, on course of charge preparation in these processes.


Flory-Huggins interaction parameter oils polyolefins solubility parameter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Buekens and H. Huang, Resources, Conservation and Recycling, 23 (1998) 163.CrossRefGoogle Scholar
  2. 2.
    M. J. Cran, S. W. Bigger and J. Scheirs, J. Therm. Anal. Cal., 81 (2005) 321.CrossRefGoogle Scholar
  3. 3.
    F. S. M. Sinfrônio, J. C. O. Santos, L. G. Pereira, A. G. Souza, M. M. Conceição, V. J. Fernandes Jr. and V. M. Fonseca, J. Therm. Anal. Cal., 79 (2005) 393.CrossRefGoogle Scholar
  4. 4.
    P. Straka and J. Náhunková, J. Therm. Anal. Cal., 76 (2004) 49.CrossRefGoogle Scholar
  5. 5.
    P. Carniti and A. Gervasini, Thermochim. Acta, 379 (2001) 51.CrossRefGoogle Scholar
  6. 6.
    J. Walendziewski, Fuel, 81 (2002) 473.CrossRefGoogle Scholar
  7. 7.
    J. Walendziewski and M. Steininger, Catal. Today, 65 (2001) 323.CrossRefGoogle Scholar
  8. 8.
    A. Tokarska, Z. N. Wydziału Budownictwa i Inżynierii Środowiska Politechniki Koszalińskiej, 21 (2003) 297 (in Polish).Google Scholar
  9. 9.
    A. Mianowski and T. Siudyga, J. Therm. Anal. Cal., 74 (2003) 623.CrossRefGoogle Scholar
  10. 10.
    A. Mianowski and T. Siudyga, Z. N. Wydziału Budownictwa i Inżynierii Środowiska Politechniki Koszalińskiej, 21 (2003) 285 (In Polish).Google Scholar
  11. 11.
    T. Kamo, Y. Kondo, Y. Kodera, Y. Sato and S. Kushiyama, Fuel, 81 (2003) 187.Google Scholar
  12. 12.
    T. Durusoy, J. Therm. Anal. Cal., 79 (2005) 663.CrossRefGoogle Scholar
  13. 13.
    A. Mianowski, P. Kałyniak and T. Siudyga, Diesel fuel from waste plastics, 5th IDENTIPLAST 2005, the Biennal Conference on the Recycling and Recovery of Plastics: Identifying the Opportunities for Plastics Recovery, 18–19.04.2005, Brussels, Belgium (electronic version).Google Scholar
  14. 14.
    G. DiPaola-Baranyi and J. E. Guillet, Macromolecules, 11 (1978) 228.CrossRefGoogle Scholar
  15. 15.
    D. W. Van Krevelen, Coal. Topology-physics-chemistry-constitution, Elsevier 1993, pp. 485–487.Google Scholar
  16. 16.
    C. Etxabarren, M. Iriarte, C. Uriarte, A. Etxeberria and J. J. Iruin, J. Chromatogr. A, 969 (2002) 245.CrossRefGoogle Scholar
  17. 17.
    D. Patterson, Y. B. Tewari, H. P. Schreiber and J. E. Guillet, Macromolecules, 4 (1971) 356.CrossRefGoogle Scholar
  18. 18.
    A. Voelkel, Crit. Rev. Anal. Chem., 22 (1991) 411.CrossRefGoogle Scholar
  19. 19.
    D. W. Van Krevelen, Fuel, 44 (1965) 229.Google Scholar
  20. 20.
    A. Voelkel and J. Fall, J. Chromatogr. A, 721 (1995) 139.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2007

Authors and Affiliations

  1. 1.Department of Inorganic Chemistry and TechnologySilesian University of TechnologyGliwicePoland

Personalised recommendations