Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 87, Issue 2, pp 437–440 | Cite as

Thermogravimetry of π–π complexes of zinc(II)tetra-tert-butylphthalocyanine with aromatic molecules

  • Natalya Sh. Lebedeva
  • Elena V. Parfenyuk
regular

Abstract

Physical-chemical characteristics of molecular complexes of Zn(II)tetra-tert-butylphthalocyanine (Zn(tert-Bu)4Pc) with aromatic solvents were obtained. The results show that polarization parameters of the interacting molecules play an important role in stabilization of the phthalocyanine π–π complexes. Dispersion forces are the major factor governing the π–π complex formation of Zn(tert-Bu)4Pc with aromatic molecules. The metallophthalocyanine may be applicable as efficient analytical reagent for separation of isomeric forms of aromatic molecules.

Keywords

zinc(II)tetra-tert-butylphthalocyanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dougherty, DA 1996Science271163CrossRefGoogle Scholar
  2. 2.
    Burley, SK, Petsko, GA 1985Science22923CrossRefGoogle Scholar
  3. 3.
    Piosik, J, Zdunek, M, Kapuscinski, J 2002Biochem. Pharma.63635CrossRefGoogle Scholar
  4. 4.
    Beer, PD, Gale, PL, Chem., Angew 2001Int. Ed. Engl.10486Google Scholar
  5. 5.
    Chen, J, Duan, L-P, Mi, J-G, Fei, W-Y, Li, Z-G 2000Fluid Phase Equilib.173109CrossRefGoogle Scholar
  6. 6.
    Kinbara, K, Oishi, K, Harada, Y, Saigo, K 2000Tetrahedron566651CrossRefGoogle Scholar
  7. 7.
    Reubsaet, JLE, Vieshar, R 1999J. Chromatogr. A841147CrossRefGoogle Scholar
  8. 8.
    Kharisov, BI, Mendes-Pokhas, MA, Ganich, EA 2000Russ. J. Coord. Chem.25323Google Scholar
  9. 9.
    Nemykin, VN, Volkov, SV 2000Russ. J. Coord. Chem.26465Google Scholar
  10. 10.
    Linstead, RP, Whalley, M 1952J. Chem. Soc.14839CrossRefGoogle Scholar
  11. 11.
    Gordon, AJ, Ford, RA,  et al. 1972The Chemist’s Companion, A handbook of Practical Data, Technique, and ReferencesWiley-Interscience PublicationsNew York440Google Scholar
  12. 12.
    Lebedeva, NSh, Yakubov, SP, Kinchin, AN, Vyugin, AI 2005Russ. J. Phys. Chem.79955Google Scholar
  13. 13.
    P. J. Haines, Thermal Methods of Analysis, Blackic Acad. and Profes., L., 1995.Google Scholar
  14. 14.
    Paulik, J, Paulik, F,  et al. 1981Comprehensive Analytical Chemistry, V. XII, Therrmal Analysis. Simultaneous Thermoanalytical Examination byMeans of the DerivatographElsevierAmsterdamGoogle Scholar
  15. 15.
    Howison, S,  et al. 2004Practical Applied Mathemetics: Modelling, Analysis, ApproximationOxford UniversityOxford130Google Scholar
  16. 16.
    Stull, DR 1947Ind. Eng. Chem.39517CrossRefGoogle Scholar
  17. 17.
    Lebedeva, NSh, Trofimova, EV, Pavlycheva, NA, Vyugin, AI 2002Russ. J. Org. Chem.381236CrossRefGoogle Scholar
  18. 18.
    Hunter, CA, Sanders, JKM 1990J. Am. Chem. Soc.1125525CrossRefGoogle Scholar
  19. 19.
    Antina, EV, Lebedeva, NSh, Vyugin, AI 2001Russ. J. Coord. Chem.27784CrossRefGoogle Scholar
  20. 20.
    Bhardwaj, U, Maken, S, Singh, KC 1998Fluid Phase Equilib.143153CrossRefGoogle Scholar
  21. 21.
    Cotton, FA, Dikarey, EV, Petrukhina, MA, Stiriba, S-E 2000Polyhedron191829CrossRefGoogle Scholar
  22. 22.
    Chamaeva, OA, Kitaygorodsky, AN 1990Bull. Acad. Sci.51269Google Scholar
  23. 23.
    Fulton, GP, La Mar, GN 1976J. Am. Chem. Soc.982119CrossRefGoogle Scholar
  24. 24.
    Antina, EV, Vyugin, AI, Lebedeva, NSh, Krestov, GA 1995Russ. J. Phys. Chem.69472Google Scholar
  25. 25.
    Lebedeva, NSh, Yakubov, SP, Vyugin, AI, Parfenyuk, EV 2003Thermochim. Acta40419CrossRefGoogle Scholar
  26. 26.
    Lebedeva, NSh, Antina, EV, Vyugin, AI 1999Russ. J. Phys. Chem.731051Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute of Solution ChemistryRussian Academy of SciencesIvanovoRussia

Personalised recommendations