Advertisement

Dehydration of solids in different modes as a proof of their primary congruent dissociative vaporization

  • L’vov B. V. 
Article

Abstract

The main purpose of this paper is to prove the applicability of the mechanism of congruent dissociative vaporization (CDV) to the solid-state decomposition kinetics through the comparison of the fundamental theoretical relationship E i/E e=(a+b)/a resulted from this mechanism with experiment. It has been shown that the ratios of E i and E e parameters of the Arrhenius equation measured in the isobaric and equimolar modes (in the presence and absence of H2O vapour) for 22 reactants with the general formula aSalt⋅bH2O or aOxide⋅bH2O are in agreement with the values of (a+b)/a. The relative standard deviation is only 17% and the correlation coefficient is close to 0.99. A probability of accidental correlation for all set of the E parameters taken from the literature is lower than 4⋅10–16 . This strongly supports the validity of the CDV mechanism. The problem of stability of polyatomic molecules of inorganic salts in the gaseous state, which are the primary decomposition products of crystalline hydrates, was also discussed on the basis of recent mass spectroscopy studies. It was concluded that any doubts in the applicability of the CDV mechanism as a general mechanism of solid-state decomposition reactions are unsound.

Keywords

congruent dissociative vaporization dehydration kinetics equimolar and isobaric modes gaseous molecules of salts Hertz–Langmuir approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garner, WE,  et al. 1955Chemistry of the Solid StateButterworthsLondonChapter 8Google Scholar
  2. 2.
    Galwey, AK, Brown, ME,  et al. 1999Thermal Decomposition of Ionic SolidsElsevierAmsterdamGoogle Scholar
  3. 3.
    L’vov, BV 1990Zh. Anal. Khim. (in Russian)452144Google Scholar
  4. 4.
    L’vov, BV 1991Mikrochim. Acta (Wien)II299CrossRefGoogle Scholar
  5. 5.
    L’vov, BV 2001Thermochim. Acta37397CrossRefGoogle Scholar
  6. 6.
    L’vov, BV 2002Thermochim. Acta389199CrossRefGoogle Scholar
  7. 7.
    L’vov, BV, Ugolkov, VL 2004Thermochim. Acta41047CrossRefGoogle Scholar
  8. 8.
    L’vov, BV 2004Thermochim. Acta424183CrossRefGoogle Scholar
  9. 9.
    Beruto, DT, Searcy, AW, Kim, MG 2004Thermochim. Acta42499CrossRefGoogle Scholar
  10. 10.
    L’vov, BV, Fernandes, GHA 1984Zh. Anal. Khim. (in Russian)39221Google Scholar
  11. 11.
    Prodan, EA,  et al. 1979Heterogeneous Chemical ReactionNauka i TekhnikaMinsk50in RussianGoogle Scholar
  12. 12.
    Ward, JR 1975Thermochim. Acta137CrossRefGoogle Scholar
  13. 13.
    B. V. L’vov and V. L. Ugolkov, J. Therm. Anal. Cal., 81 (2005), in press.Google Scholar
  14. 14.
    B. Holt, I. B. Cutler, M. E. Wadsworth, in 12th Nat. Conf. Clay and Clay Minerals, Macmillan, London 1964, pp. 55–67.Google Scholar
  15. 15.
    Brindley, GW, Sharp, JH, Patterson, JH, Nakahira, BN 1967Am. Mineral.52201Google Scholar
  16. 16.
    G. M. Zhabrova, V. A. Gordeeva, in Kinetika i Kataliz (Collection of papers), Akad. Nauk SSSR, Moscow 1960, pp. 31–42 (in Russian).Google Scholar
  17. 17.
    Novoselova, MYu, Prodan, EA, Pavlyuchenko, MM, Slyshkina, SA 1972Vesti AN BSSR, ser. khim. (in Russian)110Google Scholar
  18. 18.
    Pavlyuchenko, MM, Novoselova, MYu, Prodan, EA 1969Vesti AN BSSR, ser. khim. (in Russian)15Google Scholar
  19. 19.
    Prodan, EA,  et al. 1979Heterogeneous Chemical ReactionNauka i TekhnikaMinsk54in RussianGoogle Scholar
  20. 20.
    Dollimore, D, Evans, TA, Lee, YF, Wilburn, FW 1992Thermochim. Acta198249CrossRefGoogle Scholar
  21. 21.
    Pavlyuchenko, MM, Borisenko, EM, Torgonskaya, TI 1971Dokl. AN BSSR (in Russian)15322Google Scholar
  22. 22.
    L’vov, BV, Ugolkov, VL 2005Russian J. Appl. Chem.78379CrossRefGoogle Scholar
  23. 23.
    Okhotnikov, VB, Yakobson, BI, Lyakhov, NZ 1983React. Kinet. Catal. Lett.23125CrossRefGoogle Scholar
  24. 24.
    Kirdyashkina, NA, Okhotnikov, VB 1988React. Kinet. Catal. Lett.36417CrossRefGoogle Scholar
  25. 25.
    Lumpkin, JA, Perlmutter, DD 1995Thermochim. Acta249335CrossRefGoogle Scholar
  26. 26.
    Pavlyuchenko, MM, Borisenko, EM,  et al. 1970Heterogeneous Chemical ReactionsNauka i TekhnikaMinsk181in Russian; M. M. Pavlyuchenko (Ed.)Google Scholar
  27. 27.
    Masuda, Y, Hirata, K, Ito, Y 1992Thermochim. Acta203289CrossRefGoogle Scholar
  28. 28.
    Masuda, Y, Ito, Y 1992J. Thermal Anal.381793CrossRefGoogle Scholar
  29. 29.
    Prodan, EA, Korzhuev, VN, Petrovskaya, LI 1981Vesti AN BSSR, ser. khim. (in Russian)171Google Scholar
  30. 30.
    Samuskevich, VV, Prodan, EA, Kluy, IV 1984Vesti AN BSSR, ser. khim. (in Russian)147Google Scholar
  31. 31.
    Pavlyuchenko, MM, Kokhanovskii, VV, Prodan, EA,  et al. 1970Heterogeneous Chemical ReactionsNauka i TekhnikaMinsk168in Russian; M. M. Pavlyuchenko (Ed.)Google Scholar
  32. 32.
    Pavlyuchenko, MM, Prodan, EA, Lesnikovich, LA 1972Dokl. AN BSSR (in Russian)16719Google Scholar
  33. 33.
    Prodan, EA, Pytlev, SI 1985Vesti AN BSSR, ser. khim. (in Russian)647Google Scholar
  34. 34.
    Pavlyuchenko, MM, Samuskevich, VV, Prodan, EA 1970Vesti AN BSSR, ser. khim. (in Russian)611Google Scholar
  35. 35.
    Pavlyuchenko, MM, Pysyak, YaS, Zonov, YuG, Prodan, EA 1970Vesti AN BSSR, ser. khim. (in Russian)129Google Scholar
  36. 36.
    Prodan, EA, Zonov, YuG, Pavlyuchenko, MM 1971Vesti AN BSSR, ser. khim. (in Russian)221Google Scholar
  37. 37.
    Kazenas, YeK,  et al. 2004Vaporization Thermodynamics of Double OxidesNaukaMoscowin RussianGoogle Scholar
  38. 38.
    L’vov, BV, Novichikhin, AV 1995Spectrochim. Acta, Part B501459CrossRefGoogle Scholar
  39. 39.
    Pearson, HO,  et al. 1992Handbook of Chemical Vapor DepositionNoyesPark Ridge, NJGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Analytical ChemistrySt. Petersburg State Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations