Journal of Thermal Analysis and Calorimetry

, Volume 90, Issue 1, pp 167–172 | Cite as

Thermal behavior of a bentonite

  • M. Önal
  • Y. Sarıkaya
Regular Papers Material Science/Kinetics/Geoscience


The mineralogical composition of the Kütahya calcium bentonite (CaB) from Turkey was obtained as mass% of 60% calcium rich smectite (CaS), 30% opal-CT (OCT), trace amount illite (I), and some non-clay impurities by using chemical analysis (CA), X-ray diffraction (XRD), and thermal analysis (TG-DTA) data. The crystallinity, porosity, and surface area of the samples heated between 25–1300°C for 2 h were examined by using XRD, TG, DTA and N2-adsorption-desorption data. The position of the 001 reflection which is the most characteristic for CaS does not affect from heating between 25–600°C and then disappeared. The decrease in relative intensity (I/I 0) from 1.0 to zero and the increase in full width at half-maximum peak height (FWHM) from 0.25 to 1.0° of the 001 reflection show that the crystallinity of the CaS decreased continuously by rising the heating temperature from 25 to 900°C and then collapsed. The most characteristic 101 reflection for opals intensifies greatly between 900 and 1100°C with the opal becoming more crystalline.

The total water content of the natural bentonite after dried at 25, 105 and 150°C for 48 h were determined as 8.8, 5.0 and 2.5%, respectively. The mass loss occurs between 25 and 400°C over two steps with the maximum rate at 80 and 150°C, respectively. The exact distinction of the dehydration temperatures for the adsorbed water and interlayer water is seen almost impossible. The temperature interval, maximum rate temperature, and mass loss during dehydroxylation are 400–800°C, 670°C and 4.6–5.0%, respectively. The maximum rate temperatures for decrystallization and recrystallization are 980 and 1030°C, respectively. The changes in specific micropore volume (V mi), specific mesopore volume (V me), specific surface area (S) were discussed according to the dehydration and dehydroxylation of the CaS. The V mi, V me and S reach to their maxima at around 400°C with the values of 0.045, 0.115 cm3 g−1 and 90 m2 g−1, respectively. The radii of mesopores for the bentonite heated at 400°C are distributed between 1–10 nm and intensified approximately at 1.5 nm.


bentonite crystallinity porosity smectite thermal analysis X-ray diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Grim, Clay Minerology, 2nd Ed., McGraw-Hill, New York 1968.Google Scholar
  2. 2.
    R. E. Grim and N. Güven, Bentonites, Geology, Mineralogy, Properties and Uses. Development in Sedimentology, Vol. 24, Elsevier, Amsterdam 1978.Google Scholar
  3. 3.
    R. M. Barrer, Clays Clay Miner., 37 (1989) 385.CrossRefGoogle Scholar
  4. 4.
    E. Srasra, F. Bergaya, H. van Damme and N. K. Ariquib, Appl. Clay Sci., 4 (1989) 411.CrossRefGoogle Scholar
  5. 5.
    E. Gamiz, J. Linares and R. Delgado, Appl. Clay Sci., 6 (1992) 359.CrossRefGoogle Scholar
  6. 6.
    D. M. Moore and R. C. Reynolds Jr., X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd Ed., Oxford University Press, Oxford 1997.Google Scholar
  7. 7.
    H. H. Murray, Appl. Clay Sci., 17 (2000) 207.CrossRefGoogle Scholar
  8. 8.
    T. J. Pinnavaia, Science, 220 (1983) 365.CrossRefGoogle Scholar
  9. 9.
    R. S. Varma, Tetrahedron, 58 (2002) 1235.CrossRefGoogle Scholar
  10. 10.
    M. C. Wang, J. M. Benway and A. M. Arayssi, In Physicochemical Aspects of Soil and Related Materials, K. B. Hoodinott, R. O. Lamb and A. J. Lutenegger, Eds, ASTM STP 1095, Philadelphia 1990, pp. 1139–1158.Google Scholar
  11. 11.
    M. M. Abu-Zreig, N. M. Al-Akhras and M. F. Attom, Appl. Clay Sci., 20 (2001) 129.CrossRefGoogle Scholar
  12. 12.
    S. Chandrasekhar and S. Ramaswamy, Appl. Clay Sci., 21 (2002) 133.CrossRefGoogle Scholar
  13. 13.
    Ö. Tan, L. Yılmaz and S. Zamioğlu, Mater. Lett., 58 (2004) 1176.CrossRefGoogle Scholar
  14. 14.
    I. Kolaríková, R. Prikryl, R. Hanus and E. Jelínek, Appl. Clay Sci., 29 (2005) 215.CrossRefGoogle Scholar
  15. 15.
    W. F. Bradley and R. E. Grim, Am. Mineral., 36 (1951) 182.Google Scholar
  16. 16.
    G. W. Brindley, Ceramica, 24 (1978) 217.Google Scholar
  17. 17.
    T. Mozas, S. Bruque and A. Rodriquez, Clay Miner., 15 (1980) 421.CrossRefGoogle Scholar
  18. 18.
    W. T. Reicle, J. Catal., 94 (1985) 547.CrossRefGoogle Scholar
  19. 19.
    H. Ceylan, A. Yıldız and Y. Sarıkaya, Turk. J. Chem., 17 (1993) 267.Google Scholar
  20. 20.
    R. C. Joshi, G. Achari, D. Horfield and T. S. Nagaraj, J. Geotech. Eng. ASCE, 120 (1994) 1080.CrossRefGoogle Scholar
  21. 21.
    M. Chorom and P. Rengasamy, Clays Clay Miner., 44 (1996) 783.CrossRefGoogle Scholar
  22. 22.
    A. Neaman, M. Pelletier and F. Willieras, Appl. Clay Sci., 22 (2003) 153.CrossRefGoogle Scholar
  23. 23.
    V. Balek, Z. Malék, S. Yariv and G. Matuschek, J. Therm. Anal. Cal., 56 (1999) 67.CrossRefGoogle Scholar
  24. 24.
    E. Kristóf-Makó and A. Z. Juhász, Thermochim. Acta, 342 (1999) 105.CrossRefGoogle Scholar
  25. 25.
    M. V. Kök and W. Smykatz-Kloss, J. Therm. Anal. Cal., 64 (2001) 1271.CrossRefGoogle Scholar
  26. 26.
    V. Hlavatý and V. S. Fajnor, J. Therm. Anal. Cal., 67 (2002) 113.CrossRefGoogle Scholar
  27. 27.
    M. V. Kök, Energy Sources, 24 (2002) 899.CrossRefGoogle Scholar
  28. 28.
    M. V. Kök, Energy Sources, 26 (2004) 145.CrossRefGoogle Scholar
  29. 29.
    S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, 2nd Ed., Academic Press, London 1982.Google Scholar
  30. 30.
    J. M. Adams, Appl. Clay Sci., 2 (1987) 309.CrossRefGoogle Scholar
  31. 31.
    Z. Ge, D. Li and T. J. Pinnavaia, Microporous Mater., 3 (1994) 165.CrossRefGoogle Scholar
  32. 32.
    P. Kumar, R. V. Jasra and T. S. G. Bhat, Ind. Eng. Chem. Res., 34 (1995) 1440.CrossRefGoogle Scholar
  33. 33.
    D. R. Brown and C. N. Rhodes, Catal. Lett., 45 (1997a) 35.CrossRefGoogle Scholar
  34. 34.
    M. Önal, Y. Sarıkaya, T. Alemdaroğlu and İ. Bozdoğan, Turk. J. Chem., 27 (2003) 683.Google Scholar
  35. 35.
    Y. Sarıkaya, M. Önal, B. Baran and T. Alemdaroğlu, Clays Clay Miner., 48 (2000) 557.CrossRefGoogle Scholar
  36. 36.
    T. Alemdaroğlu, G. Akkuş, M. Önal and Y. Sarıkaya, Turk. J. Chem., 27 (2003) 675.Google Scholar
  37. 37.
    H. Noyan, M. Önal and Y. Sarıkaya, Clays Clay Miner., 54 (2006) 377.CrossRefGoogle Scholar
  38. 38.
    N. Yıldız, Y. Sarıkaya and A. Çalımlı, Appl. Clay Sci., 14 (1999) 319.CrossRefGoogle Scholar
  39. 39.
    M. Önal, Y. Sarıkaya, T. Alemdaroğlu and İ. Bozdoğan, Turk. J. Chem., 26 (2002) 409.Google Scholar
  40. 40.
    N. A. Talvitie, Anal. Chem., 23 (1951) 623.CrossRefGoogle Scholar
  41. 41.
    J. M. Elzea, J. E. Odom and W. J. Miles, Anal. Chim. Acta, 286 (1994) 107.CrossRefGoogle Scholar
  42. 42.
    S. Kahraman, M. Önal, Y. Sarıkaya and İ. Bozdoğan, Anal. Chim. Acta, 552 (2005) 201.CrossRefGoogle Scholar
  43. 43.
    Y. Sarıkaya and S. Aybar, Commun. Fac. Sci. Uni. Ank., 24B (1978) 33.Google Scholar
  44. 44.
    Y. Sarıkaya, İ. Sevinç and M. Akinç, Powder Technol., 116 (2001) 109.CrossRefGoogle Scholar
  45. 45.
    M. Gal, J. Thermal Anal., 37 (1991) 1621.CrossRefGoogle Scholar
  46. 46.
    A. Acosta, I. Iglesias, M. Aineto, M. Romero and J. Ma. Rincón, J. Therm. Anal. Cal., 67 (2002) 249.CrossRefGoogle Scholar
  47. 47.
    H. Zou, M. Li, J. Shen and A. Auroux, J. Therm. Anal. Cal., 72 (2003) 209.CrossRefGoogle Scholar
  48. 48.
    A. Fodor, L. Ghizdavu, A. Suteu and A. Caraban, J. Therm. Anal. Cal., 75 (2004) 153.CrossRefGoogle Scholar
  49. 49.
    J. Ma. Rincón, M. Romero, A. Hidalgo and Ma. J. Liso, J. Therm. Anal. Cal., 76 (2004) 903.CrossRefGoogle Scholar
  50. 50.
    N. Yener, M. Önal, G. Üstünışık and Y. Sarıkaya, J. Therm. Anal. Cal., OnlineFirst, DOI: 10.1007/s10973-005-7459-0.Google Scholar
  51. 51.
    H. Bayram, M. Önal, G. Üstünışık and Y. Sarıkaya, J. Therm. Anal. Cal., OnlineFirst, DOI: 10.1007/s10973-006-7561-y.Google Scholar
  52. 52.
    S. Brunauer, L. S. Deming, D. M. Deming and E. Teller, J. Am. Chem. Soc., 62 (1940) 1723.CrossRefGoogle Scholar
  53. 53.
    F. Rouquerol, J. Rouquerol and K. Sing, Adsorption by Powder and Porous Solids, Academic Press, London 1999.Google Scholar
  54. 54.
    B. G. Linsen, Physical and Chemical Aspects of Adsorbent and Catalysts, Academic Press, London 1970.Google Scholar
  55. 55.
    S. Brunauer, P. H. Emmett and E. Teller, J. Am. Chem. Soc., 60 (1938) 308.CrossRefGoogle Scholar
  56. 56.
    A. L. McClellan and H. F. Hornsberger, J. Colloid Interface Sci., 23 (1967) 577.CrossRefGoogle Scholar
  57. 57.
    D. H. Everett, G. D. Parfitt, K. S. W. Sing and R. Wilson, J. Appl. Chem. Biotechnol., 24 (1974) 199.CrossRefGoogle Scholar
  58. 58.
    A. U. Doğan, M. Doğan, M. Önal, Y. Sarıkaya, A. Aburub and D. E. Wurster, Clays Clay Miner., 54 (2006) 62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  1. 1.Faculty of Science, Department of ChemistryAnkara UniversityAnkaraTurkey

Personalised recommendations