Advertisement

The effect of ionizing radiation on chloramphenicol

  • Marciniec Barbara 
  • Stawny M. 
  • Kozak M. 
  • Naskrent M. 
Article

Abstract

The effect of ionizing radiation on the physicochemical properties of chloramphenicol in solid state has been studied. The compound was e-beam irradiated with doses from the range 25–400 kGy and the possible changes were detected in the organoleptic methods (colour, form, odour, solubility and clarity), by SEM observations, X-ray, chromatography (TLC), spectrophotometry (UV, IR, EPR) and thermal (DSC) methods.

No significant changes relative to the unirradiated sample were observed as a result of irradiation with the dose of 25 kGy – a standard dose for radiation sterilization, besides free radicals generation. Higher doses were found to produce a change in colour, increase in absorbance (UV), changes in the XRD spectra and appearance of products of radiolysis. The presence of the radiolysis products was confirmed by the TLC method, indirectly by DSC showing a decrease in the melting point from 0.2 to 4.5°C and enthalpy from 3.8 to 23.3 J g–1, respectively. A linear relationship was obtained between the irradiation dose (25–400 kGy) and the melting point of chloramphenicol, characterised by the correlation coefficient r=0.9968.

The EPR signal intensity increased with increasing dose of irradiation and the lifetime of the free radicals was longer than 6 months. No changes were detected in SEM and IR spectra.

As follows from our results, the DSC method is most suitable for a fast monitoring of the drugs subjected to sterilization by irradiation as it permits detection of changes occurring even on irradiation with low doses and their quantitative description.

Keywords

drug analysis DSC EPR IR radiation sterilization radiolysis in the solid state SEM TLC UV X-ray 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ehrlich, J, Bartz, QR, Smith, RM, Joslyn, DA, Burkholder, PR 1947Science106417Google Scholar
  2. 2.
    B. Marciniec, VII School of Radiation Sterilization and Hygienization, Warszawa (2003) Book of Abstract XV p. 1.Google Scholar
  3. 3.
    Pandula, E, Farkas, E, Nagykaldi, A 1970Pharmazie25254Google Scholar
  4. 4.
    Schulte, KE, Henke, G 1973Arch. Pharm.3182Google Scholar
  5. 5.
    Chen, CC, Fu, YK, Tsai, CM, Wu, ShC 1982Natl. Sci. Coun.10890Google Scholar
  6. 6.
    Varshney, L, Patel, KM 1994Radiat. Phys. Chem.43471CrossRefGoogle Scholar
  7. 7.
    Basly, JP, Longy, I, Bernard, M 1997Int. J. Pharm.154190CrossRefGoogle Scholar
  8. 8.
    Zeegers, F, Gibella, M, Tilquin, B 1997Radiat. Phys. Chem.50149CrossRefGoogle Scholar
  9. 9.
    L. Hong, Diss. Naturwissenschaften ETH Zürich (2002) Nr. 14423.Google Scholar
  10. 10.
    P. Horsch, Diss. Naturwissenschaften ETH Zürich (2001) Nr. 14302.Google Scholar
  11. 11.
    European Pharmacopeia 4th (2002).Google Scholar
  12. 12.
    Janssen, G, Vanderhaeghe, H 1975J. Chromatogr.114266CrossRefGoogle Scholar
  13. 13.
    Marciniec, B, Kozak, M, Wachowski, L, Ogrodowczyk, M 2003J. Therm. Anal. Cal.73473CrossRefGoogle Scholar
  14. 14.
    Marciniec, B, Kozak, M, Dettlaff, K 2004J. Therm. Anal. Cal.77305CrossRefGoogle Scholar
  15. 15.
    Marciniec, B, Kozak, M, Ogrodowczyk, M 2004J. Therm. Anal. Cal.77581CrossRefGoogle Scholar
  16. 16.
    B. Marciniec, VI School of Radiation Sterilization and Hygienization, Warszawa (2001) Book of Abstracts VI p. 1.Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Marciniec Barbara 
    • 1
  • Stawny M. 
    • 1
  • Kozak M. 
    • 2
  • Naskrent M. 
    • 3
  1. 1.Department of Pharmaceutical ChemistryKarol Marcinkowski University of Medical SciencesPoznańPoland
  2. 2.Department of Macromolecular PhysicsAdam Mickiewicz UniversityPoznańPoland
  3. 3.Department of Medical Physics, Faculty of PhysicsAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations