Journal of Thermal Analysis and Calorimetry

, Volume 88, Issue 3, pp 857–862 | Cite as

Cross-linking epoxide resins with hydrolysates of chrome-tanned leather waste

  • F. Langmaier
  • P. Mokrejs
  • K. Kolomazník
  • M. Mládek
  • R. Karnas


Differential scanning calorimetry was employed to investigate the reaction of diglycidyl ethers of bisphenol A (DGEBA) of mean molecular mass 348–480 Da, with collagen hydrolysate of chrome-tanned leather waste in a solvent-free environment. The reaction leads to biodegradable polymers that might facilitate recycling of plastic parts in products of the automotive and/or aeronautics industry provided with protective films on this basis. The reaction proceeds in a temperature interval of 205–220°C, at temperatures approx. 30–40°C below temperature of thermal degradation of collagen hydrolysate. The found value of reaction enthalpy, 519.19 J g−1 (= 101.24 kJ mol−1 of epoxide groups) corresponds with currently found enthalpy values of the reaction of oxirane ring with amino groups. Reaction heat depends on the composition of reaction mixture (or on mass fraction of diglycidyl ethers in the reaction mixture); proving the dependence of kinetic parameters of the reaction (Arrhenius pre-exponential factor A (min−1) and activation energy E a (kJ mol−1)) did not succeed. Obtained values of kinetic parameters are on a level corresponding to the assumption that reaction kinetics is determined by diffusion.


collagen waste hydrolysates curing differential scanning calorimetry epoxide resins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Dominighaus, Die Kunsstoffe und ihre Eigeschaften, 4th Ed., VDI/Verlag, Düsseldorf 1992, p. 129.Google Scholar
  2. 2.
    H. Lee and K. Neville, Eds, Handbook of Epoxy Resins, McGraw/Hill, NY 1972, p. 272.Google Scholar
  3. 3.
    D. Stoye and W. Freitag, Eds, Paints, Coatings and Solvents, 2nd Ed., Wiley-VCH, Weinheim-NY 1998, p. 69.Google Scholar
  4. 4.
    E. Kaisersberger, S. Knappe and W. D. Emmerich, J. Therm. Anal. Cal., 57 (1999) 265.CrossRefGoogle Scholar
  5. 5.
    M. Suguma, M. Lakshmi and B. S. R. Rededy, Eur. Polym. J., 38 (2002) 795.CrossRefGoogle Scholar
  6. 6.
    M. Suguma, M. Lakshmi, M. Srividhya and B. S. R. Reddy, J. Polym. Res., 10 (2003) 259.CrossRefGoogle Scholar
  7. 7.
    P. Khurana, S. Aggarwal, A. K. Narula and V. Choudhary, J. Therm. Anal. Cal., 71 (2003) 613.CrossRefGoogle Scholar
  8. 8.
    S. P. Rwei, S. C. Kao, G. S. Liou, J. K. C. Cheby and W. Guo, Colloid Polym. Sci., 281 (2003) 407.CrossRefGoogle Scholar
  9. 9.
    R. M. Vinnik and V. A. Roznyatovsky, J. Therm. Anal. Cal., 73 (2003) 819.CrossRefGoogle Scholar
  10. 10.
    J. K. F. Tait, H. G. M. Edwards, D. W. Farwell and J. Yarwood, Spectrochim. Acta, Part A, 561 (1995) 2101.Google Scholar
  11. 11.
    S.-G. Hong and C. S. Wu, Thermochim. Acta, 316 (1998) 167.CrossRefGoogle Scholar
  12. 12.
    Y. Yhong and O. Guo, Polymer, 39 (1998) 3451.CrossRefGoogle Scholar
  13. 13.
    D. F. Parra, L. P. Mercurui, J. R. Matos, H. F. Brito and R. R. Romano, Thermochim. Acta, 386 (2002) 143.CrossRefGoogle Scholar
  14. 14.
    B. S. Borton, J. Appl. Polym. Sci., 8 (1964) 143.Google Scholar
  15. 15.
    J. W. Sprauer and J. R. Harrison, in M. I. Kohan (Ed.), Nylon Plastics, John Wiley, NY 1973, p. 535.Google Scholar
  16. 16.
    Y. Y. Wang and S. A. Chen, Polym. Eng. Sci., 11 (1980) 823.CrossRefGoogle Scholar
  17. 17.
    K. Kolomaznik, M. Mladek, F. Langmaier, D. Janacova and M. M. Taylor, JALCA 45 (2000) 55.Google Scholar
  18. 18.
    H. J. Borchard and F. Z. Daniels, J. Am. Chem. Soc., 79 (1956) 41.CrossRefGoogle Scholar
  19. 19.
    S. S. Wong, Chemistry of Protein Conjugation and Cross-linking, CRC-Press Inc., Boca Raton F1/USA 1993, p. 309.Google Scholar
  20. 20.
    R. M. Vinnik and V. A. Roznyatovsky, J. Therm. Anal. Cal., 74 (2003) 29.CrossRefGoogle Scholar
  21. 21.
    C. J. De Bakker, St. N. A. John and G. A. Geirgie, Polymer, 34 (1993) 716.CrossRefGoogle Scholar
  22. 22.
    M. Villanueva, L. Nuñez-Regueira, M. R. Numez, B. Rial, L. Fraga and M. Monserrat, J. Therm. Anal. Cal., 70 (2002) 45.CrossRefGoogle Scholar
  23. 23.
    J. Y. Lee, J. Jang, S. S. Hwang, S. M. Hong and K. U. Kim, Polymer, 39 (1998) 6121.CrossRefGoogle Scholar
  24. 24.
    L. Barral, J. Cano, J. Polez, I. Lopez/Bueno, P. Nogueira, C. Torres, C. Ramirez and M. J. Abad, Thermochim. Acta, 344 (2000) 127.CrossRefGoogle Scholar
  25. 25.
    S. K. Ooi, W. D. Cook, G. P. Simon and C. H. Such, Polymer, 41 (2000) 3639.CrossRefGoogle Scholar
  26. 26.
    R. M. Vinnik and V. A. Roznyatovsky, J. Therm. Anal. Cal., 73 (2003) 807.CrossRefGoogle Scholar
  27. 27.
    R. M. Vinnik and V. A. Roznyatovsky, J. Therm. Anal. Cal., 75 (2004) 753.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2007

Authors and Affiliations

  • F. Langmaier
    • 1
  • P. Mokrejs
    • 1
  • K. Kolomazník
    • 1
  • M. Mládek
    • 1
  • R. Karnas
    • 1
  1. 1.Faculty of Technology of Tomas Bata UniversityInstitute of Polymer EngineeringZlínCzech Republic

Personalised recommendations