Journal of Thermal Analysis and Calorimetry

, Volume 83, Issue 3, pp 533–539 | Cite as

Thermochemical studies of phthalimide and two N-alkylsubstituted phthalimides (ALKYL=ETHYL AND n-PROPYL)

  • Ribeiro da Silva M. A. V. 
  • Santos C. P. F. 
  • Monte M. J. S. 
  • Sousa C. A. D. 


The standard (p0=0.1 MPa) molar enthalpies of formation, ΔfHm0, for crystalline phthalimides: phthalimide, N-ethylphthalimide and N-propylphthalimide were derived from the standard molar enthalpies of combustion, in oxygen, at the temperature 298.15 K, measured by static bomb-combustion calorimetry, as, respectively, – (318.0±1.7), – (350.1±2.7) and – (377.3±2.2) kJ mol–1. The standard molar enthalpies of sublimation, ΔcrgHm0, at T=298.15 K were derived by the Clausius-Clapeyron equation, from the temperature dependence of the vapour pressures for phthalimide, as (106.9±1.2) kJ mol–1 and from high temperature Calvet microcalorimetry for phthalimide, N-ethylphthalimide and N-propylphthalimide as, respectively, (106.3±1.3), (91.0±1.2) and (98.2±1.4) kJ mol–1.

The derived standard molar enthalpies of formation, in the gaseous state, are analysed in terms of enthalpic increments and interpreted in terms of molecular structure.


combustion calorimetry Knudsen effusion N-ethylphthalimide N-propylphthalimide phthalimide standard molar enthalpy of formation standard molar enthalpy of sublimation  vapour pressures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Luzzio, FA, Zacherl, DeAP 1999Tetrahedron Lett.402087CrossRefGoogle Scholar
  2. 2.
    Green, TW, Wuts, PGM,  et al. 1991Protective Groups in Organic Synthesis2John Wiley and SonsNew York309Google Scholar
  3. 3.
    Debenham, JS, Madsen, R, Roberts, C, Freiser-Reid, B 1995J. Am. Chem. Soc.1173302CrossRefGoogle Scholar
  4. 4.
    Jayakumar, R, Balaji, R, Nanjundan, S 2000Eur. Polym. J.361659CrossRefGoogle Scholar
  5. 5.
    Constantinova, TN, Garbechev, IK 1998Polym. Int.4343Google Scholar
  6. 6.
    Ismail, M, Veena, V, Animesh, KR 1998J. Appl. Polym. Sci.68217CrossRefGoogle Scholar
  7. 7. Scholar
  8. 8.
    Lima, LM, Brito, FCF, Souza, SD, Miranda, ALP, Rodrigues, CR, Fraga, AM, Barreiro, EJ 2002Bioorg. Med. Chem. Lett.121533CrossRefGoogle Scholar
  9. 9.
    Miyachi, H, Azuma, A, Ogasawara, A, Uchimura, E, Watanabe, N, Kobayashi, Y, Kato, F, Hashimoto, Y 1997J. Med. Chem.402858CrossRefGoogle Scholar
  10. 10.
    Sena, VLM, Srivastava, M, Silva, RO, Luis, VLM 2003Il Farmaco581283CrossRefGoogle Scholar
  11. 11.
    Kharasch, MS 1929J. Res. Natl. Bur. Std.2359CrossRefGoogle Scholar
  12. 12.
    Charlton, A, Macnab, JI 2000Thermochim. Acta34415CrossRefGoogle Scholar
  13. 13.
    Barber, EJ, Cady, GH 1956J. Phys. Chem.60504CrossRefGoogle Scholar
  14. 14.
    Roux, MV, Jiménez, P, Martin-Luengo, MA, Dávalos, JZ, San, Z, Hosmane, RS, Liebmam, JF 1997J. Org. Chem.622732CrossRefGoogle Scholar
  15. 15.
    Roux, MV, Jiménez, P, Dávalos, JZ, Martin-Luengo, MA, Rotello, VM, Cuello, AO, Liebmam, JF 2000Struct. Chem.111CrossRefGoogle Scholar
  16. 16.
    Ribeiro da Silva, MAV, Ribeiro da Silva, MDMC, Pilcher, G 1984Rev. Port. Quim.26163Google Scholar
  17. 17.
    Ribeiro da Silva, MAV, Ribeiro da Silva, MDMC, Pilcher, G 1984J. Chem. Thermodyn.161149CrossRefGoogle Scholar
  18. 18.
    Hubbard, WN, Scott, DW, Waddington, G,  et al. 1956Experimental ThermochemistryInterscienceNew YorkF. D. Rossini (Ed), Vol. 1, Chapter 5.Google Scholar
  19. 19.
    The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data, 11 (1982) (Supp. 2).Google Scholar
  20. 20.
    Washburn, EN 1933J. Res. Natl. Bur. Stand. (U.S.)10525CrossRefGoogle Scholar
  21. 21.
    M. A. V. Ribeiro da Silva, M. J. S. Monte and L. M. N. B. F. Santos, J. Chem. Thermodyn., 2005, in press, DOI:10.1016/j.jct.2005.08.013.Google Scholar
  22. 22.
    Adedeji, A, Brown, DLS, Connor, JA, Leung, M, Paz-Andrade, MI, Skinner, HA 1975J. Organomet. Chem.97221CrossRefGoogle Scholar
  23. 23.
    Santos, LMNBF, Schröder, B, Fernandes, OOP, Ribeiro da Silva, MAV 2004Thermochim. Acta41515CrossRefGoogle Scholar
  24. 24.
    Stull, DR, Westrum, EF, Sinke, GC,  et al. 1969The Chemical Thermodynamics of Organic CompoundsWileyNew YorkGoogle Scholar
  25. 25.
    de Kruif, CG, Kuipers, T, Van Miltenburg, JC, Schaake, RCF, Stevens, G 1981J. Chem. Thermodyn.131081CrossRefGoogle Scholar
  26. 26.
    Loss, RD 2003Pure Appl. Chem.751107CrossRefGoogle Scholar
  27. 27.
    F. D. Rossini (Ed.), Vol. 1, Chapter 14.Google Scholar
  28. 28.
    J. D. Cox, D. D. Wagman and V. A. Medvedev, CODATA Key Values for Thermodynamics. Hemisphere, New York 1989.Google Scholar
  29. 29.
    Whitman, CJ 1952J. Chem. Phys.20161CrossRefGoogle Scholar
  30. 30.
    Motzfeldt, K 1955J. Phys. Chem.59139CrossRefGoogle Scholar
  31. 31.
    P. M. Burkinshaw and C. T. Mortimer, J. Chem. Soc., Dalton Trans., (1984) 75.Google Scholar
  32. 32.
    J. B. Pedley, Thermochemical Data and Structures of Organic Compounds, Vol. 1, Thermodynamics Research Center, College Station: TX, 1994.Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Ribeiro da Silva M. A. V. 
    • 1
  • Santos C. P. F. 
    • 1
  • Monte M. J. S. 
    • 1
  • Sousa C. A. D. 
    • 1
  1. 1.Centro de Investigação em Química, Department of Chemistry, Faculty of ScienceUniversity of Porto Rua do Campo Alegre, 687PortoPortugal

Personalised recommendations