Journal of Thermal Analysis and Calorimetry

, Volume 87, Issue 2, pp 355–361 | Cite as

Thermal and kinetic study of the ferroelectric phase transition in deuterated triglycine selenate

  • F. J. Romero
  • M. C. Gallardo
  • A. Czarnecka
  • M. Koralewski
  • J. del Cerro


The specific heat and the enthalpy variation of a highly deuterated crystal of ferroelectric triglycine selenate have been measured around its first-order phase transition using the technique square modulated differential thermal analysis (SMDTA). The low temperature variation rate has allowed analyzing the kinetics of the phase transition. Due to an internal crack in the sample, the transition is carried out in two steps and an intermediate region where the transition is blocked and both phases coexist without transformation has been found. The latent heat on cooling (L c=1.32±0.02 J g–1) is higher than on heating (L h=1.08±0.02 J g–1) due to the thermal hysteresis and the great difference between the specific heat in both phases. Nevertheless, the enthalpy balance is fulfilled on heating and on cooling.


DTGSe latent heat metastable state SMDTA specific heat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gill, PS, Sauerbrunn, SR, Reading, M 1993J. Thermal Anal.39931CrossRefGoogle Scholar
  2. 2.
    Reading, M, Elliot, D, Hill, VL 1993J. Thermal Anal.40949CrossRefGoogle Scholar
  3. 3.
    Hatta, I, Ichikawa, H, Todoki, M 1995Thermochim. Acta26783CrossRefGoogle Scholar
  4. 4.
    Hatta, I, Nakayama, S 1998Thermochim. Acta31821CrossRefGoogle Scholar
  5. 5.
    Wunderlich, B 1997J. Thermal Anal.48207CrossRefGoogle Scholar
  6. 6.
    Hu, W, Wunderlich, B 2001J. Therm. Anal. Cal.66677CrossRefGoogle Scholar
  7. 7.
    Pak, J, Qiu, W, Pyda, M, Nowak-Pyda, E, Wunderlich, B 2005J. Therm. Anal. Cal.82565CrossRefGoogle Scholar
  8. 8.
    Wunderlich, B 2004J. Therm. Anal. Cal.787CrossRefGoogle Scholar
  9. 9.
    del Cerro, J 1988J. Thermal Anal.34335CrossRefGoogle Scholar
  10. 10.
    del Cerro, J, Martín-Olalla, JM, Romero, FJ 2003Thermochim. Acta401149CrossRefGoogle Scholar
  11. 11.
    del Cerro, J, Romero, FJ, Gallardo, MC, Hayward, SA, Jiménez, J 2000Thermochim. Acta34389CrossRefGoogle Scholar
  12. 12.
    Romero, FJ, Gallardo, MC, Jiménez, J, del Cerro, J 2001Thermochim. Acta37225CrossRefGoogle Scholar
  13. 13.
    Romero, FJ, Gallardo, MC, Jiménez, J, del Cerro, J, Salje, EKH 2000J. Phys.: Condens. Matter124567CrossRefGoogle Scholar
  14. 14.
    Romero, FJ, Jiménez, J, del Cerro, J 2004J. Magn. Magn. Mater.280257CrossRefGoogle Scholar
  15. 15.
    Delgado-Sanchez, JM, Martin-Olalla, JM, Gallardo, MC, Ramos, S, Koralewski, M, del Cerro, J 2005J. Phys.: Condens. Matter172645CrossRefGoogle Scholar
  16. 16.
    Jona, F, Shirane, G,  et al. 1962Ferroelectric crystalsPergamonNew YorkGoogle Scholar
  17. 17.
    Matthias, BT, Miller, CE, Remeika, J 1956Phys. Rev.104849CrossRefGoogle Scholar
  18. 18.
    Romero, FJ, Gallardo, MC, Jiménez, J, Koralewski, M, Czarnecka, A, del Cerro, J 2004J. Phys.: Condens. Matter167637CrossRefGoogle Scholar
  19. 19.
    Gesi, K 1976J. Phys. Soc. Jpn.41565CrossRefGoogle Scholar
  20. 20.
    Aragó, C, Gonzalo, JA 2000J. Phys.: Condens. Matter123737CrossRefGoogle Scholar
  21. 21.
    Aragó, C, Gonzalo, JA 2000Ferroelectr. Lett.2783CrossRefGoogle Scholar
  22. 22.
    Gallardo, MC, Jiménez, J, del Cerro, J 1995Rev. Sci. Instrum.665288CrossRefGoogle Scholar
  23. 23.
    Jiménez, J, Rojas, E, Zamora, M 1984J. Appl. Phys.563353CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • F. J. Romero
    • 1
  • M. C. Gallardo
    • 1
  • A. Czarnecka
    • 2
  • M. Koralewski
    • 2
  • J. del Cerro
    • 1
  1. 1.Departamento de Física de la Materia CondensadaInstituto Mixto de Ciencia de Materiales CSIC-Universidad de SevillaSevillaSpain
  2. 2.Institute of PhysicsAdam Mickiewicz UniversityPoznanPoland

Personalised recommendations