Melting behaviour and evolved gas analysis of xylose

  • Lappalainen M. 
  • Pitkänen I. 
  • Heikkilä H. 
  • Nurmi J. 


Two enantiomeric forms of xylose were identified as α-D-xylopyranose and α-L-xylopyranose by powder diffraction. Their melting behaviour was studied with conventional DSC and StepScan DSC method, the decomposition was studied with TG and evolved gases were analyzed with combined TG-FTIR technique. The measurements were performed at different heating rates. The decomposition of xylose samples took place in four steps and the main evolved gases were H2O, CO2 and furans. The initial temperature of TG measurements and the onset and peak temperatures of DSC measurements were moved to higher temperatures as heating rates were increased. The decomposition of L-xylose started at slightly higher temperatures than that of D-xylose and L-xylose melted at higher temperatures than D-xylose. The differences were more obvious at low heating rates. There were also differences in the melting temperatures among different samples of the same sugar. The StepScan measurements showed that the kinetic part of melting was considerable. The melting of xylose was anomalous because, besides the melting, also partial thermal decomposition and mutarotation occurred. The melting points are affected by both the method of determination and the origin and quality of samples. Melting point analysis with a standardized method appears to be a good measure of the quality of crystalline xylose. However, the melting point alone cannot be used for the identification of xylose samples in all cases.


decomposition DSC EGA melting StepScan DSC TG thermal analysis xylose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hurtta, M, Pitkänen, I, Knuutinen, J 2004Carbohydr. Res.3392267CrossRefGoogle Scholar
  2. 2.
    McNaughton, JL, Mortimer, CT,  et al. 1975Differential Scanning CalorimetryThe Perkin-Elmer CorporationConnecticut24reprinted from ‘IRS; Physical Chemistry Series 2, Volume 10’Google Scholar
  3. 3.
    Shafizadeh, F, McGinnis, GD, Susott, RA, Tatton, HW 1971J. Org. Chem.362813CrossRefGoogle Scholar
  4. 4.
    Shafizadeh, F 1971J. Polym. Sci.: Part C3621Google Scholar
  5. 5.
    Roos, Y,  et al. 1995Phase Transitions in FoodsAcademic Press Inc.San DiegoGoogle Scholar
  6. 6.
    Roos, Y 1993Carbohydr. Res.23839CrossRefGoogle Scholar
  7. 7.
    Raemy, A, Schweizer, TF 1983J. Thermal Anal.2895CrossRefGoogle Scholar
  8. 8.
    Lide, DR,  et al. 1993CRC Handbook of Chemistry and Physics, 74th Ed.CRC PressBoca RatonGoogle Scholar
  9. 9.
    Shallenberger, RS,  et al. 1982Advanced Sugar ChemistryThe Avi Publishing Company Inc.Westport, ConnecticutGoogle Scholar
  10. 10.
    Stoddart, JF,  et al. 1971Stereochemistry of CarbohydratesWiley-InterscienceNew YorkGoogle Scholar
  11. 11.
    Shallenberger, RS, Birch, GG,  et al. 1975Sugar ChemistryThe Avi Publishing Company Inc.Westport, ConnecticutGoogle Scholar
  12. 12.
    Polacek, R, Stenger, J, Kaatze, U 2002J. Chem. Phys.1162973CrossRefGoogle Scholar
  13. 13.
    Schmidt, RK, Karplus, M, Brady, JW 1996J. Am. Chem. Soc.118541CrossRefGoogle Scholar
  14. 14.
    Liu, Q, Brady, JW 1996J. Am. Chem. Soc.11812276CrossRefGoogle Scholar
  15. 15.
    Angyal, J 1968Aust. J. Chem.212737CrossRefGoogle Scholar
  16. 16.
    Takagi, S, Jeffrey, GA 1979Acta Cryst.B351482Google Scholar
  17. 17.
    Hordvik, A 1971Acta Chem. Scand.252175CrossRefGoogle Scholar
  18. 18.
    Jeffrey, GA, Robbins, A 1980Acta Cryst.B36373Google Scholar
  19. 19.
    Zaman, N 1986J. Bangladesh Acad. Sci.10177Google Scholar
  20. 20. Scholar
  21. 21.
    Hurtta, M, Pitkänen, I 2004Thermochim. Acta41919CrossRefGoogle Scholar
  22. 22.
    Pijpers, TF, Mathot, VBF, Goderis, B, Scherrenberg, RL, van der Vegte, EW 2002Macromolecules353601CrossRefGoogle Scholar
  23. 23.
    Räisänen, U, Pitkänen, I, Halttunen, H, Hurtta, M 2003J. Therm. Anal. Cal.72481CrossRefGoogle Scholar
  24. 24.
    Ohnishi, A, Katõ, K, Takagi, E 1977Carbohydr. Res.58387CrossRefGoogle Scholar
  25. 25.
    Ohnishi, A, Takagi, E, Katõ, K 1976Carbohydr. Res.50275CrossRefGoogle Scholar
  26. 26.
    Köll, P, Deyhim, S, Heyns, K 1973Chem. Ber.1063565Google Scholar
  27. 27.
    Domburgs, G, Sergeeva, VN 1960Latvijas PSR Zinatnu Akademijas Vestis5109Google Scholar
  28. 28.
    Hori, M, Nakatsubo, F 1998Carbohydr. Res.309281CrossRefGoogle Scholar
  29. 29.
    G. Dombrugs, O. I. Zil’berbrand, V. I. Kasatochkin and V. N. Sergeeva, Latvijas PSR Zinatnu Akademijas Vestis Kimijas Serija, (1962), pp. 299–303.Google Scholar
  30. 30.
    Heyns, K, Klier, M 1968Carbohydr. Res.6436CrossRefGoogle Scholar
  31. 31.
    Angyal, SJ, Pickles, VA 1972Aust. J. Chem.251695Google Scholar
  32. 32.
    Merzlyakov, M, Schick, C 2001Thermochim. Acta3805CrossRefGoogle Scholar
  33. 33.
    Sichina, WJ, Cassel, RB 2000Proceedings of the NATAS Annual Conference on Thermal Analysis and Applications28158Google Scholar
  34. 34.
    Cassel, B 2000Am. Lab.3223Google Scholar
  35. 35.
    Sichina, WJ 2001Am. Lab.3316, 18–20, 22–26Google Scholar
  36. 36.
    Pielichowski, K, Flejtuch, K, Pielichowski, J 2004Polymer451235CrossRefGoogle Scholar
  37. 37.
    Sandor, M, Bailey, NA, Mathiowitz, E 2002Polymer43279CrossRefGoogle Scholar
  38. 38.
    Pielichowski, K, Flejtuch, K 2004Polimeri49558Google Scholar
  39. 39.
    Cassel, B, Scotto, P, Sichina, B 1999Proceedings of the NATAS Annual Conference on Thermal Analysis and Applications2733Google Scholar
  40. 40.
    Robinson, P 2001Medical Plastics15114Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Lappalainen M. 
    • 1
  • Pitkänen I. 
    • 1
  • Heikkilä H. 
    • 2
  • Nurmi J. 
    • 2
  1. 1.Department of ChemistryUniversity of JyväskyläJyväskyläFinland
  2. 2.Danisco Sugar and Sweeteners Development CenterKantvikFinland

Personalised recommendations