Advertisement

An evaluation on thermokinetic parameters for hydrogen peroxide at various concentrations by DSC

  • K. Y. Chen
  • C. M. Lin
  • C. M. Shu
  • C. S. Kao
Article

Abstract

Information about the kinetics and thermal decomposition of hydrogen peroxide (H2O2) has been required for safety reasons, due to its broad applications in many chemical industries. To determine the inherent hazards during H2O2 manufacturing, transportation, disposal, usage, and so on, this study deliberately selected various H2O2 concentrations and analyzed them by differential scanning calorimetry (DSC). In addition, thermokinetic parameters were not only established for each of these reactions, but also aimed at comprehensive, kinetic models with various tests conducted at different heating rates.

To build up a comprehensive kinetic model, various tests were conducted by heating rates of 1, 2, 4, 10°C min–1, respectively. According to dynamic DSC tests, the experimental curves show that H2O2 decomposition has one exothermic peak and may start to decompose under 47–81°C. The total heat of decomposition is about 192–1079 J g–1. Not only can these results prevent accidents caused by H2O2 during storage and transportation, but also assess its inherent hazards and thereby design procedures for emergency response while runaway reactions occurring.

Keywords

DSC H2O2 kinetics runaway reactions thermal decomposition thermokinetic parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shu, CM, Yang, YJ 2002Thermochim. Acta392–393257Google Scholar
  2. 2.
    Frost, RL, Martens, WN, Erickson, KL 2005J. Therm. Anal. Cal.82603CrossRefGoogle Scholar
  3. 3.
    Dig, HP, Pinto, SS, Ramos, JJM 2004J. Therm. Anal. Cal.77893CrossRefGoogle Scholar
  4. 4.
    Pradyumnan, PP, Ittyachen, MA 2000J. Therm. Anal. Cal.61243CrossRefGoogle Scholar
  5. 5.
    Sivapirakasam, SP, Surianarayanan, M, Chandrasekaran, F, Swaminathan, G 2004J. Therm. Anal. Cal.78799Google Scholar
  6. 6.
    Yuan, MH, Shu, C-M, Kossoy, AA 2005Thermochim. Acta43067CrossRefGoogle Scholar
  7. 7.
    Bowes, PC,  et al. 1984Self-heating: Evaluating and Controlling the HazardsElsevierAmsterdam, The Netherlands18Google Scholar
  8. 8.
    Tuma, LD 1997J. Thermal Anal.491689CrossRefGoogle Scholar
  9. 9.
    Hou, HY, Shu, C-M, Duh, Y-S 2001AIChE J.471893CrossRefGoogle Scholar
  10. 10.
    Wang, YW, Shu, C-M, Duh, Y-S, Kao, C-S 2001Ind. Eng. Chem. Res.401125CrossRefGoogle Scholar
  11. 11.
    Yeh, P-Y, Shu, C-M, Duh, Y-S 2003Ind. Eng. Chem. Res.421CrossRefGoogle Scholar
  12. 12.
    Odlyha, M, Wang, Q, Foster, GM, de Groot, J, Horton, M, Bozec, L 2005J. Therm. Anal. Cal.82627CrossRefGoogle Scholar
  13. 13.
    W. T. Hess, ‘Hydrogen Peroxide’ in Encyclopedia of Chemical Technology Ed. by Kirk-Othmer, 4th Ed., Wiley Interscience, New York, USA, 13 (1991) 961.Google Scholar
  14. 14.
    Mettler Toledo, Operating Instructions, STARe Software with Solaris Operating System, Sweden 2003.Google Scholar
  15. 15.
    Townsend, DI, Tou, JC 1980Thermochim. Acta371CrossRefGoogle Scholar
  16. 16.
    Ishii, D, Yamada, T, Nakagawa, M, Iyoda, T, Yoshida, H 2005J. Therm. Anal. Cal.81569CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • K. Y. Chen
    • 1
  • C. M. Lin
    • 2
  • C. M. Shu
    • 2
  • C. S. Kao
    • 3
  1. 1.Doctoral Candidate, Graduate School of Engineering Science and TechnologyNational Yunlin University of Science and Technology (NYUST)YunlinTaiwan
  2. 2.Department of Safety, Health, and Environmental Engineering, NYUSTProcess Safety and Disaster Prevention LaboratoryYunlinTaiwan
  3. 3.Department of Safety, Health and Environmental EngineeringNational United UniversityMiaoliTaiwan

Personalised recommendations