Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 85, Issue 1, pp 225–234 | Cite as

Evaluation of adiabatic runaway reaction and vent sizing for emergency relief from DSC

  • Wang Y. W. 
  • Duh Y. S. 
  • Shu C. M. 
Article

Abstract

Analytical equations related adiabatic runaway reactions to programmed scanning thermal curves from differential scanning calorimetry (DSC) were proposed. Thermal or pressure hazards can be assessed from the adiabatic trajectories expressed in the analytical equations. These industrially energetic materials include polymerizable monomers, unstable organic peroxides and nitro-compounds. Various emergency relief behaviors, such as tempered vapor, gassy, and hybrid were re-evaluated for calculating vent sizing or mass flow rates from DSC thermal curves and the related physical properties.

Keywords

analytical equations DSC emergency relief behaviors mass flow rates vent sizing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. G. Fisher, H. S. Forrest, S. S. Grossel, J. E. Huff, A. R. Muller, J. A. Noronha, D. A. Shaw and B. J. Tilley, AIChE (1992), New York, NY 10017.Google Scholar
  2. 2.
    Boicourt, GW 1995Proc. Saf. Prog.1493CrossRefGoogle Scholar
  3. 3.
    Ho, TC, Duh, YS, Chen, JR 1998Proc. Saf. Prog.17259CrossRefGoogle Scholar
  4. 4.
    Fauske, HK 1984Plant/Opera. Prog.3145CrossRefGoogle Scholar
  5. 5.
    Leung, JC 1987AIChE J.33952CrossRefGoogle Scholar
  6. 6.
    Leung, JC 1987AIChE J.321622CrossRefGoogle Scholar
  7. 7.
    Mettler Toledo et al. 2004STARe Software with Solaris, Operating SystemOperating InstructionsMettler ToledoSwitzerlandGoogle Scholar
  8. 8.
    Fauske & Associates, Inc. et al. 2002VSP2 Manual and MethodologyFauske & Associates, Inc.IL, USAGoogle Scholar
  9. 9.
    Fauske, HK, Leung, JC 1985Chem. Eng. Prog.8139Google Scholar
  10. 10.
    Wilcock, E, Rogers, RL 1997J. Loss Preve. Proc. Ind.10289CrossRefGoogle Scholar
  11. 11.
    Huff, JE 1982Plant/Opera. Prog.1211CrossRefGoogle Scholar
  12. 12.
    Rota, R, Ruggeri, G, Morbidelli, M, Ditali, S 2002J. Loss Preve. Proc. Ind.1549CrossRefGoogle Scholar
  13. 13.
    Leung, JC, Fauske, HK 1987Plant/Opera. Prog.677CrossRefGoogle Scholar
  14. 14.
    Huff, JE 1984Plant/Opera. Prog.350CrossRefGoogle Scholar
  15. 15.
    Leung, JC 1992AIChE J.38723CrossRefGoogle Scholar
  16. 16.
    Chervin, S, Bodman, GT 2002Thermochim. Acta392371CrossRefGoogle Scholar
  17. 17.
    J. C. Jeung, ‘Pressure Relief System Design Using DIERS Technology’, 3 Day Seminar given at ITRI, Hesichu, Taiwan, May 10–12, 1995.Google Scholar
  18. 18.
    Wang, YW, Shu, CM, Duh, YS, Kao, CS 2001Ind. Eng. Chem. Res.401125CrossRefGoogle Scholar
  19. 19.
    Hou, HY, Liao, TS, Duh, YS, Shu, CM 2006J. Therm. Anal. Cal.83167CrossRefGoogle Scholar
  20. 20.
    Kharasch, MS, Fono, A, Nudenberg, W 1951J. Org. Chem.15113CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Doctoral Program of Engineering Science and TechnologyNational Yunlin University of Science and Technology, NYUSTDouliou, YunlinTaiwan, ROC
  2. 2.Department of Occupational Safety and HealthJen-Teh Junior College of Medicine, Nursing and ManagementHoulong, MiaoliTaiwan, ROC
  3. 3.Process Safety and Disaster Prevention Laboratory, Department of Safety, Health, and Environmental EngineeringNational Yunlin University of Science and Technology, NYUSTDouliou, YunlinTaiwan, ROC

Personalised recommendations