Journal of Thermal Analysis and Calorimetry

, Volume 85, Issue 1, pp 179–187 | Cite as

The contributions of MDSC to the understanding of the thermodynamics of polymers



Contributions of modern, temperature-modulated calorimetry are qualitatively and quantitatively discussed. The limitations are summarized, and it is shown that their understanding leads to new advances in instrumentation and measurement. The new thermal analysis experiments allow to separate reversing from irreversible processes. This opens the irreversible states and transitions to a description in terms of equilibrium and irreversible thermodynamics. Amorphous systems can be treated frommacroscopic to nanometer sizes with weak to strong coupling between neighboring phases. Semicrystalline, macromolecular systems are understood on the basis of modulated calorimetry as globally metastable, micro-to-nanophase-separated systems with locally reversible transitions.


coupling between phases irreversible thermodynamics nanophase reversibility TMDSC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Reading, B. K. Hahn and B.S. Crowe, 1993, U.S. Patent, Method and Apparatus for Modulated Differential Analysis, 5,224,775, July 6.Google Scholar
  2. 2.
    Wunderlich, B 2003Progress Polym. Sci.28383CrossRefGoogle Scholar
  3. 3.
    M. Reading, D. Elliott and V. Hill, Some Aspects of the Theory and Practice of Modulated Differential Scanning Calorimetry. Proc. 21st NATAS Conf. in Atlanta GA, Sept. 13–16, 21 (1992) 145.Google Scholar
  4. 4.
    Wunderlich, B,  et al. 2005Thermal Analysis of Polymeric MaterialsSpringerBerlinGoogle Scholar
  5. 5.
    Boller, A, Okazaki, I, Wunderlich, B 1996Thermochim. Acta2841CrossRefGoogle Scholar
  6. 6.
    Okazaki, I, Wunderlich, B 1996J. Polym. Sci., Part B: Polym. Phys.342941CrossRefGoogle Scholar
  7. 7.
    Pak, J, Wunderlich, B 2002J. Polym Sci., Part B: Polym. Phys.402219CrossRefGoogle Scholar
  8. 8.
    Qiu, W, Pyda, M, Nowak-Pyda, E, Habenschuss, A, Wunderlich, B 2005Macromolecules388454CrossRefGoogle Scholar
  9. 9.
    Androsch, R, Wunderlich, B 1999Thermochim. Acta33327CrossRefGoogle Scholar
  10. 10.
    Wunderlich, B 2003Thermochim. Acta4021CrossRefGoogle Scholar
  11. 11.
    Thomas, LC, Boller, A, Okazaki, I, Wunderlich, B 1997Thermochim. Acta29185CrossRefGoogle Scholar
  12. 12.
    Gaur, U, Wunderlich, B 1980Macromolecules131618CrossRefGoogle Scholar
  13. 13.
    Schick, C, Wurm, A, Mohammed, A 2001Colloid Polymer Sci.279800CrossRefGoogle Scholar
  14. 14.
    Pak, J, Pyda, M, Wunderlich, B 2003Macromolecules36495CrossRefGoogle Scholar
  15. 15.
    Ishikiriyama, K, Wunderlich, B 1997Macromolecules304126CrossRefGoogle Scholar
  16. 16.
    Pak, J, Wunderlich, B 2000J. Polym. Sci., Part B: Polymer Phys.382810CrossRefGoogle Scholar
  17. 17.
    Pak, J, Wunderlich, B 2001Macromolecules344492CrossRefGoogle Scholar
  18. 18.
    Okazaki, I, Wunderlich, B 1987Macromolecules301758CrossRefGoogle Scholar
  19. 19.
    B. Wunderlich, Fast and Super-fast DTA and Calorimetry, Proc. 32nd NATAS conf. in Williamsburg, VA, Oct. 4–6, M. J. Rich, edt. CD edition, 32 (2004) 018.04.569/1–10Google Scholar
  20. 20.
    Wunderlich, B 2000Thermochim. Acta35543CrossRefGoogle Scholar
  21. 21.
    Wunderlich, B, Boller, A, Okazaki, I, Kreitmeier, S 1996J. Thermal Anal.471013CrossRefGoogle Scholar
  22. 22.
    Sumpter, BG, Noid, DW, Liang, GL, Wunderlich, B 1994Adv. Polym. Sci.11627CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of ChemistryThe University of TennesseeKnoxvilleUSA

Personalised recommendations