Journal of Thermal Analysis and Calorimetry

, Volume 86, Issue 3, pp 733–738 | Cite as

Plasma synthesized nano-aluminum powders

Structure, thermal properties and combustion behavior
  • Alla Pivkina
  • D. Ivanov
  • Yu. Frolov
  • Svetlana Mudretsova
  • Anna Nickolskaya
  • J. Schoonman


The plasma electro-condensation process was used to synthesize nano-sized aluminum powders. Adding different chemicals modified the physical and chemical properties of these powders. To characterize the nano-sized powders, X-ray diffraction, TEM, BET analyses, and simultaneous TG/DSC analyses were performed. TG/DSC analyses revealed a dramatic degradation of the aluminum oxide layer after storage of the aluminum powder in air for a period of several months. The burning rate of the model solid propellant with nano-sized aluminum was experimentally examined. The combustion behavior of nano-sized aluminum will be presented and will be compared with the combustion behavior of the micron-sized powders.


aluminum powder combustion DSC nano-particles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pavlovetz, G 1999Scientific and Technological Basics of Production and Use of Ultra-Sized Metal Powders for the High-Energetic Compositions, Section of Application ProblemsPrezidium of Russian Academy of ScienceMoscow80Google Scholar
  2. 2.
    A. Pivkina, Yu. Frolov, S. Zavyalov, D. Ivanov, J. Schoonman, A. Streletskii and P. Butyagin, Proceedings of Thirty-First International Pyrotechnics Seminar, Fort Collins, Colorado July 11–16, (2004) 285.Google Scholar
  3. 3.
    Mench, MM, Kuo, KK, Yeh, CL, Lu, YC 1998Combust. Sci. Technol.135269Google Scholar
  4. 4.
    Aumann, CE, Skofronick, GL, Martin, JA 1995J. Vac. Sci. Technol.B131178Google Scholar
  5. 5.
    Champion, Y, Bigot, J 1998Nanostructured Materials101097CrossRefGoogle Scholar
  6. 6.
    Pivkina, A, Ulyanova, P, Frolov, Yu, Zavyalov, S, Schoonman, J 2004Propellants, Explosives, Pyrotechnics2939CrossRefGoogle Scholar
  7. 7.
    Burger, HC, Cittert, PH 1930Z. Phys.66210CrossRefGoogle Scholar
  8. 8.
    A. G. Goursat, G. Vernet, J. F. Rimpert, J. Foulard, T. Darle and J. Bigot,Metal powder manufacture starting with a molten material, Air Liquide SA pour l’Etude et l’Exploitation des Procèdes Georges Claude, France 1984, p. 9.Google Scholar
  9. 9.
    Ivanov, GV, Lerner, MI, Tepper, F 1996Adv. Powder Metall. Pat. Meter.415Google Scholar
  10. 10.
    ASTM C1274-00, Standard Test Method for Advanced Ceramic Specific Surface Area by Physical Adsorption, 01/01/2000, American Society for Testing Materials, Conshohocken, PA, USA.Google Scholar
  11. 11.
    Mary Sandstrom, Betty Jorgensen, Bettina Smith, Joseph Mang and Steven F. Son, Proceedings of Thirty-First International Pyrotechnics Seminar, Fort Collins, Colorado July 11–16, (2004) 241.Google Scholar
  12. 12.
    Franchy, R 2000Surf. Sci. Reports38195CrossRefGoogle Scholar
  13. 13.
    Phung, X, Groza, J, Stach, EA, Williams, LN, Ritchey, SB 2003Mater. Sci. Eng.A359261Google Scholar
  14. 14.
    vI. Vol’nov, Peroxide Compounds of Alkali-Earth Metals (in Russian), Moscow, Nauka 1983, p. 136.Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Alla Pivkina
    • 1
  • D. Ivanov
    • 1
  • Yu. Frolov
    • 1
  • Svetlana Mudretsova
    • 2
  • Anna Nickolskaya
    • 2
  • J. Schoonman
    • 3
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of ScienceMoscowRussia
  2. 2.Moscow State UniversityDepartment of ChemistryMoscowRussia
  3. 3.Delft Institute for Sustainable EnergyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations