Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 84, Issue 1, pp 165–174 | Cite as

Sintering of hydroxyapatite lath-like powders

  • Koumoulidis G. C. 
  • Trapalis C. C. 
  • Vaimakis T. C. 
Article

Abstract

Hydroxyapatite powders, which consisted of lath-like single-crystalline particles, were calcined at two different temperatures. Green and calcined powders were used for sintering HAp ceramic samples under uniaxial pressing. Powders and sintered samples were studied using various analytical techniques in order to determine how calcination affects the particle properties and the sintering behavior of HAp powders. It was found that calcination decreases the particles length and changes the particles morphology from lath-like to spherical shape. The relative density increases with increasing calcination temperature and aging time. It was found that long aging time favor the formation of thermally stable HAp particles, whereas a shorter one results in the formation of β-calcium phosphate during thermal treatment. Sintering of compacted powders begins at temperatures greater than 900°C, with a trend to increase the onset temperature as the calcination temperature is increased.

Keywords

apatite-D biomedical applications-E calcination-A sintering-B whiskers-C 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hench, LL 1991J. Am. Ceram. Soc.741487CrossRefGoogle Scholar
  2. 2.
    Suchanek, W, Yoshimura, M 1998J. Mater. Res.1394Google Scholar
  3. 3.
    Suchanek, W, Yoshimura, M 1998J. Am. Ceram. Soc.81765Google Scholar
  4. 4.
    Hong, L, Hengchang, X, De Groot, K 1992J. Biomed. Mater. Res.267CrossRefGoogle Scholar
  5. 5.
    Yoshimura, M, Suda, H,  et al. 1994Hydrothermal Processing of Hydroxyapatite: Past, Present and Future. In Hydroxyapatite and Related MaterialsCRC PressBoston45Ed. P. W. Brown, and B. ConstantzGoogle Scholar
  6. 6.
    Juang, HY, Hon, MH 1996Biomaterials172059CrossRefGoogle Scholar
  7. 7.
    Burnham, AK 2005Chem. Eng. J.10847CrossRefGoogle Scholar
  8. 8.
    He, Z, Ma, J, Wang, C 2005Biomaterials261613Google Scholar
  9. 9.
    Bailliez, S, Nzihou, A 2004Chem. Eng. J.98141CrossRefGoogle Scholar
  10. 10.
    Best, S, Bonfield, W 1994J. Mater. Sci.: Mater. Med.5516CrossRefGoogle Scholar
  11. 11.
    Kothapalli, C, Wei, M, Vasiliev, A, Shaw, MT 2004Acta Mater.525655CrossRefGoogle Scholar
  12. 12.
    Majling, J, Kremničan, V, Durovčíková, R, Svetík, Š 1999J. Therm. Anal. Cal.57587CrossRefGoogle Scholar
  13. 13.
    LeGeros, RZ, LeGeros, JP,  et al. 1993Dense Hydroxyapatite. In An Introduction to BioceramicsWorld ScientificSingapore139Ed. L. L. Hench and J. WilsonGoogle Scholar
  14. 14.
    Rapacz-Kmita, A, Paluszkiewicz, C, Ślósarczyk, A, Paszkiewicz, Z 2005J. Mol. Struct.744–747653Google Scholar
  15. 15.
    Muralithran, G, Ramesh, S 2000Ceram. Int.26221CrossRefGoogle Scholar
  16. 16.
    N. Y. Mostafa, Mater. Chem. Phys., in press.Google Scholar
  17. 17.
    Koumoulidis, GC, Vaimakis, TC, Sdoukos, AT, Boukos, NK, Trapalis, CC 2001J. Am. Ceram. Soc.841203Google Scholar
  18. 18.
    Yamashita, K, Kanazawa, T,  et al. 1989Hydroxyapatite. In Inorganic Phosphate Materials. Materials Science Monography, Vol. 52ElsevierTokyo, Japan15Edited by T. KanazawaGoogle Scholar
  19. 19.
    Cheng, ZH, Yasukawa, A, Kandori, K, Ishikawa, T 1998J. Chem. Soc. Faraday Trans.941501Google Scholar
  20. 20.
    Blakeslee, KC, Condrate, RA 1971J. Am. Ceram. Soc.54559Google Scholar
  21. 21.
    Raynaud, S, Champion, E, Bernache-Assollant, D, Thomas, P 2002Biomaterials231073Google Scholar
  22. 22.
    Landi, E, Tampieri, A, Celotti, G, Sprio, S 2000J. Eur. Ceram. Soc.202377CrossRefGoogle Scholar
  23. 23.
    Ruys, AJ, Wei, M, Sorrell, CC, Dickson, MR, Brandwood, A, Milthorpe, BK 1995Biomaterials16409CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Koumoulidis G. C. 
    • 1
  • Trapalis C. C. 
    • 2
  • Vaimakis T. C. 
    • 1
  1. 1.Department of ChemistryUniversity of IoanninaIoanninaGreece
  2. 2.Demokritos’ National Center for Scientific ResearchInstitute of Materials ScienceAthensGreece

Personalised recommendations