Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 86, Issue 2, pp 463–468 | Cite as

Effect of a reactive diluent on the curing and dynamomechanical properties of an epoxy-diamine system

  • Lisardo Núñez-Regueira
  • M. Villanueva
  • I. Fraga-Rivas
regular

Abstract

Differential scanning calorimetry was used to study the influence of an epoxy reactive diluent, vinylcyclohexane dioxide, on the curing reaction of a polymeric system composed of diglycidyl ether of bisphenol A (n=0) and 1,2-diaminecyclohexane (DCH). Heat evolution and glass transition temperature, were measured in terms of the added diluent percentage. Experimental results show that both the curing degree and the glass transition temperature of the polymeric system decrease with an increase in the diluent percentage.

Dynamic mechanical analysis of several samples also showed that T g decreases with the increase of diluent percentage, thus corroborating DSC measurements.

Keywords

DMA DSC epoxy-diamine system glass transition temperature reactive diluent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ellis, B 1993 Chemistry and Technology of Epoxy Resins1stBlackie Academic and ProfessionalGreat BritainGoogle Scholar
  2. 2.
    M. Watkins, A. Frederix and D. Weinmann, PCEMarch, 1988.Google Scholar
  3. 3.
    Núñez, L, Villanueva, M, Rial, B, Núñez, MR, Fraga, L 2002J. Therm. Anal. Cal.7075CrossRefGoogle Scholar
  4. 4.
    Lee, H, Neville, K 1967Handbook of Epoxy ResinMcGraw-HillNew YorkGoogle Scholar
  5. 5.
    May, CA 1988Epoxy Resins: Chemistry and TechnologyMarcel DekkerNew YorkGoogle Scholar
  6. 6.
    Núñez, L, Taboada, J, Fraga, F, Núñez, MR 1997J. Appl. Polym. Sci.661377CrossRefGoogle Scholar
  7. 7.
    PerkinElmer Corp.1991Users Manual 1020 Series DSC-7 Thermal Analysis Sytem, Norwalk USAGoogle Scholar
  8. 8.
    Ramírez, C, Rico, M, Vilariño, JML, Barral, L, Ladra, M, Montero, B 2005J. Therm. Anal. Cal.80153CrossRefGoogle Scholar
  9. 9.
    Macan, J, Brnardić, I, Ivanković, M, Mencer, HJ 2005J. Therm. Anal. Cal.81369CrossRefGoogle Scholar
  10. 10.
    Laza, JM, Julian, CA, Larrauri, E, Rodríguez, M, Leon, LM 1998Polymer4035CrossRefGoogle Scholar
  11. 11.
    Miyagawa, H, Drzal, LT 2004Polymer455163CrossRefGoogle Scholar
  12. 12.
    R. E. Wetton, Development in Polymer Characterization, Ed. J. V. Dawkins, London 1986.Google Scholar
  13. 13.
    Hale, A, Macosko, CW, Bair, HE 1991Macromolecules242610CrossRefGoogle Scholar
  14. 14.
    Montserrat, S, Andreu, G, Cortés, P, Calventus, Y, Colomer, P, Hutchinson, JM, Málek, J 1996J. Appl. Polym. Sci.611663CrossRefGoogle Scholar
  15. 15.
    Ferry, JD 1980Viscoelastic Properties of PolymersJohn Wiley and Sons USAGoogle Scholar
  16. 16.
    Matsuoka, S 1992 Relaxation Phenomena in PolymersCarl. Hanser Verlag MunichGoogle Scholar
  17. 17.
    Ellis, B, Found, MS, Bell, JR 1996J. Appl. Polym. Sci.591493CrossRefGoogle Scholar
  18. 18.
    Valea, A, Martínez, I, González, ML, Eciza, A, Mondragón, I 1998J. Appl. Polym. Sci.702595CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Lisardo Núñez-Regueira
    • 1
  • M. Villanueva
    • 1
  • I. Fraga-Rivas
    • 1
  1. 1.Research Group TERBIPROMAT, Departamento de Física AplicadaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations