Skip to main content
Log in

Influence of particle size on the crystallization process and the bioactive behavior of a bioactive glass system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Bioactive glasses have attracted considerable interest in recent years, due to their technological application, especially in biomaterials research. Differential scanning calorimetry (DSC) has been used in the study of the crystallization mechanism in the SiO2–Na2O–CaO–P2O5 glass system, as a function of particle size. The curve of the bulk glass presents a slightly asymmetric crystallization peak that could be deconvoluted into two separate peaks, their separation being followed in the form of powder glasses. Also, a shift of the crystallization peaks to lower temperatures was observed with the decrease of the particle size. FTIR studies – that are confirmed by XRD measurements – proved that the different peaks could be attributed to different crystallization mechanisms. Moreover, it is presented the bioactive behavior of the specific glass as a function of particle size. The study of bioactivity is performed through the process of its immersion in simulated human blood plasma (simulated body fluid, SBF) and the subsequent examination of the development of carbonate-containing hydroxyapatite layer on the surface of the particles. The bioactive response is improved with the increase of the particle size of powders up to 80 μm and remains almost unchanged for further increase, following the specific surface to volume ratio decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X. Chatzistavrou, T. Zorba, K. Chrissafis, E. Pavlidou, E. Kontonasaki, P. Koidis and K. M. Paraskevopoulos, MEDICTA 2005: Proc. of the 7th Mediterranean Conference on Calorimetry and Thermal Analysis, Eds M. Lalia-Kantouri, Thessaloniki, Greece 2005, p. 200.

  2. G Rizzi A Scrivani M Fini R Giardino (2004) Int. J. Artif. Organs 27 649 Occurrence Handle1:CAS:528:DC%2BD2cXhtVentrrI

    CAS  Google Scholar 

  3. X. Chatzistavrou, K. Chrissafis, E. Polychroniadis, E. Kontonasaki, P. Koidis and K. M. Paraskevopoulos, J. Therm. Anal. Cal., in press DOI: 10.1007/s10973-005-7166-x.

  4. GC Koumoulidis CC Trapalis TC Vaimakis (2006) J. Therm. Anal. Cal. 84 165 Occurrence Handle1:CAS:528:DC%2BD28XjsVOmsL0%3D Occurrence Handle10.1007/s10973-005-7210-x

    Article  CAS  Google Scholar 

  5. T Ozawa (1971) Polymer 12 150 Occurrence Handle1:CAS:528:DyaE3MXhsVams70%3D Occurrence Handle10.1016/0032-3861(71)90041-3

    Article  CAS  Google Scholar 

  6. K Matusita S Sakka Y Matsui (1975) J. Mater. Sci. 10 961 Occurrence Handle1:CAS:528:DyaE2MXks12htro%3D Occurrence Handle10.1007/BF00823212

    Article  CAS  Google Scholar 

  7. T Kokubo H Kushitani S Sakka T Kitsugi T Yamamuro (1990) J. Biomed. Mater. Res. 24 721 Occurrence Handle1:CAS:528:DyaK3cXltlyntLk%3D Occurrence Handle10.1002/jbm.820240607

    Article  CAS  Google Scholar 

  8. SB Cho K Nakanishi T Kokubo N Soga C Ohtsuki T Nakamura T Kitsugi T Yamamuro (1995) J. Am. Ceram. Soc. 78 1769 Occurrence Handle1:CAS:528:DyaK2MXmvFGht70%3D Occurrence Handle10.1111/j.1151-2916.1995.tb08887.x

    Article  CAS  Google Scholar 

  9. X Chatzistavrou T Zorba E Kontonasaki K Chrissafis P Koidis KM Paraskevopoulos (2004) Phys. Status Solidi 201 944 Occurrence Handle1:CAS:528:DC%2BD2cXjs1Glurg%3D Occurrence Handle10.1002/pssa.200306776

    Article  CAS  Google Scholar 

  10. C Rey MH Kim L Gerstenfeld JM Glimcher (1996) Connect Tissue Res. 35 343 Occurrence Handle1:CAS:528:DyaK2sXhvFamtLk%3D

    CAS  Google Scholar 

  11. I Rehman W Bonfield (1997) J. Mater. Sci.-Mater. Med. 8 1 Occurrence Handle1:CAS:528:DyaK2sXlsV2jsw%3D%3D Occurrence Handle10.1023/A:1018570213546

    Article  CAS  Google Scholar 

  12. MH Kim C Rey JM Glimcher (1995) J. Bone Min. Res. 10 1589 Occurrence Handle1:CAS:528:DyaK2MXpsFGmtr8%3D Occurrence Handle10.1002/jbmr.5650101021

    Article  CAS  Google Scholar 

  13. A Stoch W Jastrzebski A Brozek B Trybalska M Cichocinska E Szarawara (1999) J. Mol. Struct. 511/512 287 Occurrence Handle10.1016/S0022-2860(99)00170-2

    Article  Google Scholar 

  14. X. Chatzistavrou, N. Kantiranis, E. Kontonasaki, K. Chrissafis, P. Koidis and K. M. Paraskevopoulos, submitted (2006).

  15. CS Ray DE Day (1996) Thermochim. Acta 280/281 163 Occurrence Handle1:CAS:528:DyaK28XkvFGmtb0%3D Occurrence Handle10.1016/0040-6031(95)02640-1

    Article  CAS  Google Scholar 

  16. CS Ray DE Day (1990) J. Am. Ceram. Soc. 73 439 Occurrence Handle1:CAS:528:DyaK3cXhsVChtro%3D Occurrence Handle10.1111/j.1151-2916.1990.tb06532.x

    Article  CAS  Google Scholar 

  17. W Li BS Mitchell (1999) J. Non-Cryst. Solids 255 199 Occurrence Handle1:CAS:528:DyaK1MXmtVOqt7g%3D Occurrence Handle10.1016/S0022-3093(99)00415-9

    Article  CAS  Google Scholar 

  18. CS Ray DE Day W Huang K Lakshmi Narayan TS Cull KF Kelton (1996) J. Non-Cryst. Solids 204 1 Occurrence Handle1:CAS:528:DyaK28XntVKjsLo%3D Occurrence Handle10.1016/0022-3093(96)00401-2

    Article  CAS  Google Scholar 

  19. MR Filgueiras G La Torre LL Hench (1993) J. Biomed. Mater. Res. 27 445 Occurrence Handle1:CAS:528:DyaK3sXktlChtb0%3D Occurrence Handle10.1002/jbm.820270405

    Article  CAS  Google Scholar 

  20. G Berger M Giehler (1984) Phys. Status Solidi 86 532

    Google Scholar 

  21. CD Clupper LL Hench (2001) J. Mater. Sci.-Mater. Med. 12 917 Occurrence Handle1:CAS:528:DC%2BD38XovVeksQ%3D%3D Occurrence Handle10.1023/A:1012836426866

    Article  CAS  Google Scholar 

  22. M Ogino F Ohuchi LL Hench (1980) J. Biomed. Mater. Res. 14 55 Occurrence Handle1:CAS:528:DyaL3cXhtlGgtLc%3D Occurrence Handle10.1002/jbm.820140107

    Article  CAS  Google Scholar 

  23. F Garcia JL Arias B Mayor J Pou I Rehman J Knowles S Best B Leon M Perez-Amor W Bonfield (1998) J. Biomed. Mater. Res. 43 69 Occurrence Handle1:CAS:528:DyaK1cXht1Ogtro%3D Occurrence Handle10.1002/(SICI)1097-4636(199821)43:1<69::AID-JBM8>3.0.CO;2-K

    Article  CAS  Google Scholar 

  24. B. W. White, in ‘The Infrared Spectra of Minerals’, Edited by V. C. Farmer (Mineralogical Society, SW7 5HR, London 1974), p. 274.

  25. M Filgueiras G La Torre LL Hench (1993) J. Biomed. Mater. Res. 27 445 Occurrence Handle1:CAS:528:DyaK3sXktlChtb0%3D Occurrence Handle10.1002/jbm.820270405

    Article  CAS  Google Scholar 

  26. Ö. Andersson, K. Vähätalo, R. Happonen, A. Yli-Upro and K. Karlsson. In: Ö. Andersson, R. Happonen, A. Yli-Urpo, Eds Bioceramics Volume 7, Proceedings of the 7th International Symposium on Ceramics in Medicine. Turku, Finland: Butterworth-Heinemann Ltd., 1994, p. 67.

  27. D. Greenspan, J. Zhong and G. La Torre, In: Ö. Andersson, R. Happonen, A. Yli-Urpo, Eds Bioceramics Volume 7, Proceedings of the 7th International Symposium on Ceramics in Medicine. Turku, Finland: Butterworth-Heinemann Ltd., 1994, p. 55.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paraskevopoulos K. M..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatzistavrou, X., Zorba, T., Chrissafis, K. et al. Influence of particle size on the crystallization process and the bioactive behavior of a bioactive glass system. J Therm Anal Calorim 85, 253–259 (2006). https://doi.org/10.1007/s10973-005-7165-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-005-7165-y

Keywords

Navigation